/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_reduce.h" #include "arg_info.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "error.h" #include "fix.h" #include "group.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" #include #include using namespace LAMMPS_NS; #define BIG 1.0e20 //---------------------------------------------------------------- void abs_max(void *in, void *inout, int *len, MPI_Datatype *type) { // r is the already reduced value, n is the new value double n = std::fabs(*(double *) in), r = *(double *) inout; double m; if (n > r) { m = n; } else { m = r; } *(double *) inout = m; } void abs_min(void *in, void *inout, int *len, MPI_Datatype *type) { // r is the already reduced value, n is the new value double n = std::fabs(*(double *) in), r = *(double *) inout; double m; if (n < r) { m = n; } else { m = r; } *(double *) inout = m; } /* ---------------------------------------------------------------------- */ ComputeReduce::ComputeReduce(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), nvalues(0), onevec(nullptr), replace(nullptr), indices(nullptr), owner(nullptr), idregion(nullptr), region(nullptr), varatom(nullptr) { int iarg = 0; if (strcmp(style, "reduce") == 0) { if (narg < 5) utils::missing_cmd_args(FLERR, "compute reduce", error); iarg = 3; } else if (strcmp(style, "reduce/region") == 0) { if (narg < 6) utils::missing_cmd_args(FLERR, "compute reduce/region", error); if (!domain->get_region_by_id(arg[3])) error->all(FLERR, "Region {} for compute reduce/region does not exist", arg[3]); idregion = utils::strdup(arg[3]); iarg = 4; } if (strcmp(arg[iarg], "sum") == 0) mode = SUM; else if (strcmp(arg[iarg], "sumsq") == 0) mode = SUMSQ; else if (strcmp(arg[iarg], "sumabs") == 0) mode = SUMABS; else if (strcmp(arg[iarg], "min") == 0) mode = MINN; else if (strcmp(arg[iarg], "max") == 0) mode = MAXX; else if (strcmp(arg[iarg], "ave") == 0) mode = AVE; else if (strcmp(arg[iarg], "avesq") == 0) mode = AVESQ; else if (strcmp(arg[iarg], "aveabs") == 0) mode = AVEABS; else if (strcmp(arg[iarg], "maxabs") == 0) mode = MAXABS; else if (strcmp(arg[iarg], "minabs") == 0) mode = MINABS; else error->all(FLERR, "Unknown compute {} mode: {}", style, arg[iarg]); iarg++; if (mode == SUM || mode == SUMSQ || mode == SUMABS) { this->scalar_reduction_operation = MPI_SUM; } else if (mode == AVE || mode == AVESQ || mode == AVEABS) { this->scalar_reduction_operation = MPI_SUM; } else if (mode == MINN) { this->scalar_reduction_operation = MPI_MIN; } else if (mode == MAXX) { this->scalar_reduction_operation = MPI_MAX; } else if (mode == MAXABS) { MPI_Op_create(&abs_max, 1, &this->scalar_reduction_operation); } else if (mode == MINABS) { MPI_Op_create(&abs_min, 1, &this->scalar_reduction_operation); } // expand args if any have wildcard character "*" int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR, narg - iarg, &arg[iarg], 1, earg, lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values values.clear(); nvalues = 0; for (int iarg = 0; iarg < nargnew; ++iarg) { value_t val; val.id = ""; val.flavor = 0; val.val.c = nullptr; if (strcmp(arg[iarg], "x") == 0) { val.which = ArgInfo::X; val.argindex = 0; } else if (strcmp(arg[iarg], "y") == 0) { val.which = ArgInfo::X; val.argindex = 1; } else if (strcmp(arg[iarg], "z") == 0) { val.which = ArgInfo::X; val.argindex = 2; } else if (strcmp(arg[iarg], "vx") == 0) { val.which = ArgInfo::V; val.argindex = 0; } else if (strcmp(arg[iarg], "vy") == 0) { val.which = ArgInfo::V; val.argindex = 1; } else if (strcmp(arg[iarg], "vz") == 0) { val.which = ArgInfo::V; val.argindex = 2; } else if (strcmp(arg[iarg], "fx") == 0) { val.which = ArgInfo::F; val.argindex = 0; } else if (strcmp(arg[iarg], "fy") == 0) { val.which = ArgInfo::F; val.argindex = 1; } else if (strcmp(arg[iarg], "fz") == 0) { val.which = ArgInfo::F; val.argindex = 2; } else { ArgInfo argi(arg[iarg]); val.which = argi.get_type(); val.argindex = argi.get_index1(); val.id = argi.get_name(); if ((val.which == ArgInfo::UNKNOWN) || (argi.get_dim() > 1)) error->all(FLERR, "Illegal compute {} argument: {}", style, arg[iarg]); if (val.which == ArgInfo::NONE) break; } values.push_back(val); } // optional args nvalues = values.size(); replace = new int[nvalues]; for (int i = 0; i < nvalues; ++i) replace[i] = -1; std::string mycmd = "compute "; mycmd += style; for (int iarg = nvalues; iarg < nargnew; iarg++) { if (strcmp(arg[iarg], "replace") == 0) { if (iarg + 3 > narg) utils::missing_cmd_args(FLERR, mycmd + " replace", error); if (mode != MINN && mode != MAXX) error->all(FLERR, "Compute {} replace requires min or max mode", style); int col1 = utils::inumeric(FLERR, arg[iarg + 1], false, lmp) - 1; int col2 = utils::inumeric(FLERR, arg[iarg + 2], false, lmp) - 1; if ((col1 < 0) || (col1 >= nvalues)) error->all(FLERR, "Invalid compute {} replace first column index {}", style, col1); if ((col2 < 0) || (col2 >= nvalues)) error->all(FLERR, "Invalid compute {} replace second column index {}", style, col2); if (col1 == col2) error->all(FLERR, "Compute {} replace columns must be different"); if ((replace[col1] >= 0) || (replace[col2] >= 0)) error->all(FLERR, "Compute {} replace column already used for another replacement"); replace[col1] = col2; iarg += 2; } else error->all(FLERR, "Unknown compute {} keyword: {}", style, arg[iarg]); } // delete replace list if not set int flag = 0; for (int i = 0; i < nvalues; i++) if (replace[i] >= 0) flag = 1; if (!flag) { delete[] replace; replace = nullptr; } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete[] earg[i]; memory->sfree(earg); } // setup and error check for (auto &val : values) { if (val.which == ArgInfo::X || val.which == ArgInfo::V || val.which == ArgInfo::F) val.flavor = PERATOM; else if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR, "Compute ID {} for compute {} does not exist", val.id, style); if (val.val.c->peratom_flag) { val.flavor = PERATOM; if (val.argindex == 0 && val.val.c->size_peratom_cols != 0) error->all(FLERR, "Compute {} compute {} does not calculate a per-atom vector", style, val.id); if (val.argindex && val.val.c->size_peratom_cols == 0) error->all(FLERR, "Compute {} compute {} does not calculate a per-atom array", style, val.id); if (val.argindex && val.argindex > val.val.c->size_peratom_cols) error->all(FLERR, "Compute {} compute {} array is accessed out-of-range", style, val.id); } else if (val.val.c->local_flag) { val.flavor = LOCAL; if (val.argindex == 0 && val.val.c->size_local_cols != 0) error->all(FLERR, "Compute {} compute {} does not calculate a local vector", style, val.id); if (val.argindex && val.val.c->size_local_cols == 0) error->all(FLERR, "Compute {} compute {} does not calculate a local array", style, val.id); if (val.argindex && val.argindex > val.val.c->size_local_cols) error->all(FLERR, "Compute {} compute {} array is accessed out-of-range", style, val.id); } else error->all(FLERR, "Compute {} compute {} calculates global values", style, val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for compute {} does not exist", val.id, style); if (val.val.f->peratom_flag) { val.flavor = PERATOM; if (val.argindex == 0 && (val.val.f->size_peratom_cols != 0)) error->all(FLERR, "Compute {} fix {} does not calculate a per-atom vector", style, val.id); if (val.argindex && (val.val.f->size_peratom_cols == 0)) error->all(FLERR, "Compute {} fix {} does not calculate a per-atom array", style, val.id); if (val.argindex && (val.argindex > val.val.f->size_peratom_cols)) error->all(FLERR, "Compute {} fix {} array is accessed out-of-range", style, val.id); } else if (val.val.f->local_flag) { val.flavor = LOCAL; if (val.argindex == 0 && (val.val.f->size_local_cols != 0)) error->all(FLERR, "Compute {} fix {} does not calculate a local vector", style, val.id); if (val.argindex && (val.val.f->size_local_cols == 0)) error->all(FLERR, "Compute {} fix {} does not calculate a local array", style, val.id); if (val.argindex && (val.argindex > val.val.f->size_local_cols)) error->all(FLERR, "Compute {} fix {} array is accessed out-of-range", style, val.id); } else error->all(FLERR, "Compute {} fix {} calculates global values", style, val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR, "Variable name {} for compute {} does not exist", val.id, style); if (input->variable->atomstyle(val.val.v) == 0) error->all(FLERR, "Compute {} variable {} is not atom-style variable", style, val.id); val.flavor = PERATOM; } } // this compute produces either a scalar or vector if (nvalues == 1) { scalar_flag = 1; if (mode == SUM || mode == SUMSQ || mode == SUMABS) extscalar = 1; else extscalar = 0; vector = onevec = nullptr; indices = owner = nullptr; } else { vector_flag = 1; size_vector = nvalues; if (mode == SUM || mode == SUMSQ || mode == SUMABS) extvector = 1; else extvector = 0; vector = new double[size_vector]; onevec = new double[size_vector]; indices = new int[size_vector]; owner = new int[size_vector]; } maxatom = 0; varatom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeReduce::~ComputeReduce() { delete[] replace; delete[] idregion; delete[] vector; delete[] onevec; delete[] indices; delete[] owner; memory->destroy(varatom); } /* ---------------------------------------------------------------------- */ void ComputeReduce::init() { // set indices of all computes,fixes,variables for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR, "Compute ID {} for compute {} does not exist", val.id, style); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for compute {} does not exist", val.id, style); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR, "Variable name {} for compute {} does not exist", val.id, style); } } // set index and check validity of region if (idregion) { region = domain->get_region_by_id(idregion); if (!region) error->all(FLERR, "Region {} for compute reduce/region does not exist", idregion); } } /* ---------------------------------------------------------------------- */ double ComputeReduce::compute_scalar() { invoked_scalar = update->ntimestep; double one = compute_one(0, -1); MPI_Allreduce(&one, &scalar, 1, MPI_DOUBLE, this->scalar_reduction_operation, world); if (mode == AVE || mode == AVESQ || mode == AVEABS) { bigint n = count(0); if (n) scalar /= n; } return scalar; } /* ---------------------------------------------------------------------- */ void ComputeReduce::compute_vector() { invoked_vector = update->ntimestep; for (int m = 0; m < nvalues; m++) if (!replace || replace[m] < 0) { onevec[m] = compute_one(m, -1); indices[m] = index; } if (mode == SUM || mode == SUMSQ || mode == AVEABS) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_SUM, world); } else if (mode == MINABS || mode == MAXABS) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, this->scalar_reduction_operation, world); } else if (mode == MINN) { if (!replace) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, this->scalar_reduction_operation, world); } else { for (int m = 0; m < nvalues; m++) if (replace[m] < 0) { pairme.value = onevec[m]; pairme.proc = comm->me; MPI_Allreduce(&pairme, &pairall, 1, MPI_DOUBLE_INT, MPI_MINLOC, world); vector[m] = pairall.value; owner[m] = pairall.proc; } for (int m = 0; m < nvalues; m++) if (replace[m] >= 0) { if (comm->me == owner[replace[m]]) vector[m] = compute_one(m, indices[replace[m]]); MPI_Bcast(&vector[m], 1, MPI_DOUBLE, owner[replace[m]], world); } } } else if (mode == MAXX) { if (!replace) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, this->scalar_reduction_operation, world); } else { for (int m = 0; m < nvalues; m++) if (replace[m] < 0) { pairme.value = onevec[m]; pairme.proc = comm->me; MPI_Allreduce(&pairme, &pairall, 1, MPI_DOUBLE_INT, MPI_MAXLOC, world); vector[m] = pairall.value; owner[m] = pairall.proc; } for (int m = 0; m < nvalues; m++) if (replace[m] >= 0) { if (comm->me == owner[replace[m]]) vector[m] = compute_one(m, indices[replace[m]]); MPI_Bcast(&vector[m], 1, MPI_DOUBLE, owner[replace[m]], world); } } } else if (mode == AVE || mode == AVESQ || mode == AVEABS) { for (int m = 0; m < nvalues; m++) { MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_SUM, world); bigint n = count(m); if (n) vector[m] /= n; } } } /* ---------------------------------------------------------------------- calculate reduced value for one input M and return it if flag = -1: sum/min/max/ave all values in vector for per-atom quantities, limit to atoms in group if mode = MIN or MAX, also set index to which vector value wins if flag >= 0: simply return vector[flag] ------------------------------------------------------------------------- */ double ComputeReduce::compute_one(int m, int flag) { // invoke the appropriate attribute,compute,fix,variable // for flag = -1, compute scalar quantity by scanning over atom properties // only include atoms in group for atom properties and per-atom quantities index = -1; auto &val = values[m]; // initialization in case it has not yet been run, e.g. when // the compute was invoked right after it has been created if ((val.which == ArgInfo::COMPUTE) || (val.which == ArgInfo::FIX)) { if (val.val.c == nullptr) init(); } int aidx = val.argindex; int *mask = atom->mask; int nlocal = atom->nlocal; double one = 0.0; if (mode == MINN || mode == MINABS) one = BIG; if (mode == MAXX) one = -BIG; if (val.which == ArgInfo::X) { double **x = atom->x; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, x[i][aidx], i); } else one = x[flag][aidx]; } else if (val.which == ArgInfo::V) { double **v = atom->v; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, v[i][aidx], i); } else one = v[flag][aidx]; } else if (val.which == ArgInfo::F) { double **f = atom->f; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, f[i][aidx], i); } else one = f[flag][aidx]; // invoke compute if not previously invoked } else if (val.which == ArgInfo::COMPUTE) { if (val.flavor == PERATOM) { if (!(val.val.c->invoked_flag & Compute::INVOKED_PERATOM)) { val.val.c->compute_peratom(); val.val.c->invoked_flag |= Compute::INVOKED_PERATOM; } if (aidx == 0) { double *comp_vec = val.val.c->vector_atom; int n = nlocal; if (flag < 0) { for (int i = 0; i < n; i++) if (mask[i] & groupbit) combine(one, comp_vec[i], i); } else one = comp_vec[flag]; } else { double **carray_atom = val.val.c->array_atom; int n = nlocal; int aidxm1 = aidx - 1; if (flag < 0) { for (int i = 0; i < n; i++) if (mask[i] & groupbit) combine(one, carray_atom[i][aidxm1], i); } else one = carray_atom[flag][aidxm1]; } } else if (val.flavor == LOCAL) { if (!(val.val.c->invoked_flag & Compute::INVOKED_LOCAL)) { val.val.c->compute_local(); val.val.c->invoked_flag |= Compute::INVOKED_LOCAL; } if (aidx == 0) { double *comp_vec = val.val.c->vector_local; int n = val.val.c->size_local_rows; if (flag < 0) for (int i = 0; i < n; i++) combine(one, comp_vec[i], i); else one = comp_vec[flag]; } else { double **carray_local = val.val.c->array_local; int n = val.val.c->size_local_rows; int aidxm1 = aidx - 1; if (flag < 0) for (int i = 0; i < n; i++) combine(one, carray_local[i][aidxm1], i); else one = carray_local[flag][aidxm1]; } } // access fix fields, check if fix frequency is a match } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->peratom_freq) error->all(FLERR, "Fix {} used in compute {} not computed at compatible time", val.id, style); if (val.flavor == PERATOM) { if (aidx == 0) { double *fix_vector = val.val.f->vector_atom; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, fix_vector[i], i); } else one = fix_vector[flag]; } else { double **fix_array = val.val.f->array_atom; int aidxm1 = aidx - 1; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, fix_array[i][aidxm1], i); } else one = fix_array[flag][aidxm1]; } } else if (val.flavor == LOCAL) { if (aidx == 0) { double *fix_vector = val.val.f->vector_local; int n = val.val.f->size_local_rows; if (flag < 0) for (int i = 0; i < n; i++) combine(one, fix_vector[i], i); else one = fix_vector[flag]; } else { double **fix_array = val.val.f->array_local; int n = val.val.f->size_local_rows; int aidxm1 = aidx - 1; if (flag < 0) for (int i = 0; i < n; i++) combine(one, fix_array[i][aidxm1], i); else one = fix_array[flag][aidxm1]; } } // evaluate atom-style variable } else if (val.which == ArgInfo::VARIABLE) { if (atom->nmax > maxatom) { maxatom = atom->nmax; memory->destroy(varatom); memory->create(varatom, maxatom, "reduce:varatom"); } input->variable->compute_atom(val.val.v, igroup, varatom, 1, 0); if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, varatom[i], i); } else one = varatom[flag]; } return one; } /* ---------------------------------------------------------------------- */ bigint ComputeReduce::count(int m) { auto &val = values[m]; if ((val.which == ArgInfo::X) || (val.which == ArgInfo::V) || (val.which == ArgInfo::F)) return group->count(igroup); else if (val.which == ArgInfo::COMPUTE) { if (val.flavor == PERATOM) { return group->count(igroup); } else if (val.flavor == LOCAL) { bigint ncount = val.val.c->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount, &ncountall, 1, MPI_LMP_BIGINT, MPI_SUM, world); return ncountall; } } else if (val.which == ArgInfo::FIX) { if (val.flavor == PERATOM) { return group->count(igroup); } else if (val.flavor == LOCAL) { bigint ncount = val.val.f->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount, &ncountall, 1, MPI_LMP_BIGINT, MPI_SUM, world); return ncountall; } } else if (val.which == ArgInfo::VARIABLE) return group->count(igroup); bigint dummy = 0; return dummy; } /* ---------------------------------------------------------------------- combine two values according to reduction mode for MIN/MAX, also update index with winner ------------------------------------------------------------------------- */ void ComputeReduce::combine(double &one, double two, int i) { if (mode == SUM || mode == AVE) one += two; else if (mode == SUMSQ || mode == AVESQ) one += two * two; else if (mode == SUMABS || mode == AVEABS) one += std::fabs(two); else if (mode == MINN) { if (two < one) { one = two; index = i; } } else if (mode == MAXX) { if (two > one) { one = two; index = i; } } else if (mode == MAXABS) { if (std::fabs(two) > one) { one = std::fabs(two); index = i; } } } /* ---------------------------------------------------------------------- memory usage of varatom ------------------------------------------------------------------------- */ double ComputeReduce::memory_usage() { double bytes = (double) maxatom * sizeof(double); return bytes; }