/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "angle_gaussian.h" #include #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMAL 0.001 #define SMALL 1.0e-8 /* ---------------------------------------------------------------------- */ AngleGaussian::AngleGaussian(LAMMPS *lmp) : Angle(lmp), nterms(nullptr), angle_temperature(nullptr), alpha(nullptr), width(nullptr), theta0(nullptr) { } /* ---------------------------------------------------------------------- */ AngleGaussian::~AngleGaussian() { if (allocated && !copymode) { memory->destroy(setflag); memory->destroy(nterms); memory->destroy(angle_temperature); for (int i = 1; i <= atom->nangletypes; i++) { delete [] alpha[i]; delete [] width[i]; delete [] theta0[i]; } delete [] alpha; delete [] width; delete [] theta0; } } /* ---------------------------------------------------------------------- */ void AngleGaussian::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double dtheta; double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22; double prefactor, exponent, g_i, sum_g_i, sum_numerator; eangle = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMAL) s = SMAL; s = 1.0/s; // force & energy double theta = acos(c); sum_g_i = 0.0; sum_numerator = 0.0; for (int i = 0; i < nterms[type]; i++) { dtheta = theta - theta0[type][i]; prefactor = (alpha[type][i]/(width[type][i]*sqrt(MY_PI2))); exponent = -2*dtheta*dtheta/(width[type][i]*width[type][i]); g_i = prefactor*exp(exponent); sum_g_i += g_i; sum_numerator += g_i*dtheta/(width[type][i]*width[type][i]); } if (sum_g_i < SMALL) sum_g_i = SMALL; if (eflag) eangle = -(force->boltz*angle_temperature[type])*log(sum_g_i); // I should check about the sign of this expression a = -4.0*(force->boltz*angle_temperature[type])*(sum_numerator/sum_g_i)*s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleGaussian::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(nterms,n+1,"angle:nterms"); memory->create(angle_temperature,n+1,"angle:angle_temperature"); alpha = new double *[n+1]; width = new double *[n+1]; theta0 = new double *[n+1]; memset(alpha,0,sizeof(double)*(n+1)); memset(width,0,sizeof(double)*(n+1)); memset(theta0,0,sizeof(double)*(n+1)); memory->create(setflag,n+1,"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ void AngleGaussian::coeff(int narg, char **arg) { if (narg < 6) error->all(FLERR,"Incorrect args for angle coefficients"); int ilo,ihi; utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error); double angle_temperature_one = utils::numeric(FLERR,arg[1],false,lmp); int n = utils::inumeric(FLERR,arg[2],false,lmp); if (narg != 3*n + 3) error->all(FLERR,"Incorrect args for angle coefficients"); if (!allocated) allocate(); // convert theta0 from degrees to radians int count = 0; for (int i = ilo; i <= ihi; i++) { angle_temperature[i] = angle_temperature_one; nterms[i] = n; delete[] alpha[i]; alpha[i] = new double [n]; delete[] width[i]; width[i] = new double [n]; delete[] theta0[i]; theta0[i] = new double [n]; for (int j = 0; j < n; j++) { alpha[i][j] = utils::numeric(FLERR,arg[3+3*j],false,lmp); width[i][j] = utils::numeric(FLERR,arg[4+3*j],false,lmp); theta0[i][j] = utils::numeric(FLERR,arg[5+3*j],false,lmp)* MY_PI / 180.0; setflag[i] = 1; } count++; } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- */ double AngleGaussian::equilibrium_angle(int i) { return theta0[i][0]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleGaussian::write_restart(FILE *fp) { fwrite(&angle_temperature[1],sizeof(double),atom->nangletypes,fp); fwrite(&nterms[1],sizeof(int),atom->nangletypes,fp); for (int i = 1; i <= atom->nangletypes; i++) { fwrite(alpha[i],sizeof(double),nterms[i],fp); fwrite(width[i],sizeof(double),nterms[i],fp); fwrite(theta0[i],sizeof(double),nterms[i],fp); } } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleGaussian::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { utils::sfread(FLERR,&angle_temperature[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&nterms[1],sizeof(int),atom->nangletypes,fp,nullptr,error); } MPI_Bcast(&angle_temperature[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&nterms[1],atom->nangletypes,MPI_INT,0,world); // allocate for (int i = 1; i <= atom->nangletypes; i++) { alpha[i] = new double [nterms[i]]; width[i] = new double [nterms[i]]; theta0[i] = new double [nterms[i]]; } if (comm->me == 0) { for (int i = 1; i <= atom->nangletypes; i++) { utils::sfread(FLERR,alpha[i],sizeof(double),nterms[i],fp,nullptr,error); utils::sfread(FLERR,width[i],sizeof(double),nterms[i],fp,nullptr,error); utils::sfread(FLERR,theta0[i],sizeof(double),nterms[i],fp,nullptr,error); } } for (int i = 1; i <= atom->nangletypes; i++) { MPI_Bcast(alpha[i],nterms[i],MPI_DOUBLE,0,world); MPI_Bcast(width[i],nterms[i],MPI_DOUBLE,0,world); MPI_Bcast(theta0[i],nterms[i],MPI_DOUBLE,0,world); } for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleGaussian::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) { fprintf(fp,"%d %g %d",i,angle_temperature[i],nterms[i]); for (int j = 0; j < nterms[i]; j++) { fprintf(fp," %g %g %g",alpha[i][j],width[i][j],(theta0[i][j]/MY_PI)*180.0); } fprintf(fp, "\n"); } } /* ---------------------------------------------------------------------- */ double AngleGaussian::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double theta = acos(c) ; double sum_g_i = 0.0; for (int i = 0; i < nterms[type]; i++) { double dtheta = theta - theta0[type][i]; double prefactor = (alpha[type][i]/(width[type][i]*sqrt(MY_PI2))); double exponent = -2*dtheta*dtheta/(width[type][i]*width[type][i]); double g_i = prefactor*exp(exponent); sum_g_i += g_i; } if (sum_g_i < SMALL) sum_g_i = SMALL; return -(force->boltz*angle_temperature[type])*log(sum_g_i); }