/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Laurent Joly (U Lyon, France), ljoly.ulyon@gmail.com ------------------------------------------------------------------------- */ #include "mpi.h" #include "stdlib.h" #include "string.h" #include "compute_temp_rotate.h" #include "atom.h" #include "update.h" #include "force.h" #include "group.h" #include "domain.h" #include "lattice.h" #include "error.h" #include "memory.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeTempRotate::ComputeTempRotate(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg != 3) error->all(FLERR,"Illegal compute temp/rotate command"); scalar_flag = vector_flag = 1; size_vector = 6; extscalar = 0; extvector = 1; tempflag = 1; tempbias = 1; maxbias = 0; vbiasall = NULL; vector = new double[6]; } /* ---------------------------------------------------------------------- */ ComputeTempRotate::~ComputeTempRotate() { memory->destroy(vbiasall); delete [] vector; } /* ---------------------------------------------------------------------- */ void ComputeTempRotate::init() { masstotal = group->mass(igroup); } /* ---------------------------------------------------------------------- */ void ComputeTempRotate::setup() { fix_dof = -1; dof_compute(); } /* ---------------------------------------------------------------------- */ void ComputeTempRotate::dof_compute() { if (fix_dof) adjust_dof_fix(); double natoms = group->count(igroup); int nper = domain->dimension; dof = nper * natoms; dof -= extra_dof + fix_dof; if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz); else tfactor = 0.0; } /* ---------------------------------------------------------------------- */ double ComputeTempRotate::compute_scalar() { double vthermal[3]; double vcm[3],xcm[3],inertia[3][3],angmom[3],omega[3]; double dx,dy,dz; double unwrap[3]; invoked_scalar = update->ntimestep; if (dynamic) masstotal = group->mass(igroup); group->vcm(igroup,masstotal,vcm); group->xcm(igroup,masstotal,xcm); group->inertia(igroup,xcm,inertia); group->angmom(igroup,xcm,angmom); group->omega(angmom,inertia,omega); double **x = atom->x; double **v = atom->v; double *mass = atom->mass; double *rmass = atom->rmass; int *type = atom->type; imageint *image = atom->image; int *mask = atom->mask; int nlocal = atom->nlocal; if (nlocal > maxbias) { memory->destroy(vbiasall); maxbias = atom->nmax; memory->create(vbiasall,maxbias,3,"temp/rotate:vbiasall"); } double t = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - xcm[0]; dy = unwrap[1] - xcm[1]; dz = unwrap[2] - xcm[2]; vbiasall[i][0] = vcm[0] + dz*omega[1]-dy*omega[2]; vbiasall[i][1] = vcm[1] + dx*omega[2]-dz*omega[0]; vbiasall[i][2] = vcm[2] + dy*omega[0]-dx*omega[1]; vthermal[0] = v[i][0] - vbiasall[i][0]; vthermal[1] = v[i][1] - vbiasall[i][1]; vthermal[2] = v[i][2] - vbiasall[i][2]; if (rmass) t += (vthermal[0]*vthermal[0] + vthermal[1]*vthermal[1] + vthermal[2]*vthermal[2]) * rmass[i]; else t += (vthermal[0]*vthermal[0] + vthermal[1]*vthermal[1] + vthermal[2]*vthermal[2]) * mass[type[i]]; } MPI_Allreduce(&t,&scalar,1,MPI_DOUBLE,MPI_SUM,world); if (dynamic) dof_compute(); scalar *= tfactor; return scalar; } /* ---------------------------------------------------------------------- */ void ComputeTempRotate::compute_vector() { double vthermal[3]; double vcm[3],xcm[3],inertia[3][3],angmom[3],omega[3]; double dx,dy,dz; double unwrap[3]; invoked_vector = update->ntimestep; if (dynamic) masstotal = group->mass(igroup); group->vcm(igroup,masstotal,vcm); group->xcm(igroup,masstotal,xcm); group->inertia(igroup,xcm,inertia); group->angmom(igroup,xcm,angmom); group->omega(angmom,inertia,omega); double **x = atom->x; double **v = atom->v; double *mass = atom->mass; double *rmass = atom->rmass; int *type = atom->type; imageint *image = atom->image; int *mask = atom->mask; int nlocal = atom->nlocal; if (nlocal > maxbias) { memory->destroy(vbiasall); maxbias = atom->nmax; memory->create(vbiasall,maxbias,3,"temp/rotate:vbiasall"); } double massone,t[6]; for (int i = 0; i < 6; i++) t[i] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - xcm[0]; dy = unwrap[1] - xcm[1]; dz = unwrap[2] - xcm[2]; vbiasall[i][0] = vcm[0] + dz*omega[1]-dy*omega[2]; vbiasall[i][1] = vcm[1] + dx*omega[2]-dz*omega[0]; vbiasall[i][2] = vcm[2] + dy*omega[0]-dx*omega[1]; vthermal[0] = v[i][0] - vbiasall[i][0]; vthermal[1] = v[i][1] - vbiasall[i][1]; vthermal[2] = v[i][2] - vbiasall[i][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; t[0] += massone * vthermal[0]*vthermal[0]; t[1] += massone * vthermal[1]*vthermal[1]; t[2] += massone * vthermal[2]*vthermal[2]; t[3] += massone * vthermal[0]*vthermal[1]; t[4] += massone * vthermal[0]*vthermal[2]; t[5] += massone * vthermal[1]*vthermal[2]; } MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world); for (int i = 0; i < 6; i++) vector[i] *= force->mvv2e; } /* ---------------------------------------------------------------------- remove velocity bias from atom I to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempRotate::remove_bias(int i, double *v) { v[0] -= vbiasall[i][0]; v[1] -= vbiasall[i][1]; v[2] -= vbiasall[i][2]; } /* ---------------------------------------------------------------------- remove velocity bias from all atoms to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempRotate::remove_bias_all() { double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { v[i][0] -= vbiasall[i][0]; v[i][1] -= vbiasall[i][1]; v[i][2] -= vbiasall[i][2]; } } /* ---------------------------------------------------------------------- add back in velocity bias to atom I removed by remove_bias() assume remove_bias() was previously called ------------------------------------------------------------------------- */ void ComputeTempRotate::restore_bias(int i, double *v) { v[0] += vbiasall[i][0]; v[1] += vbiasall[i][1]; v[2] += vbiasall[i][2]; } /* ---------------------------------------------------------------------- add back in velocity bias to all atoms removed by remove_bias_all() assume remove_bias_all() was previously called ------------------------------------------------------------------------- */ void ComputeTempRotate::restore_bias_all() { double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { v[i][0] += vbiasall[i][0]; v[i][1] += vbiasall[i][1]; v[i][2] += vbiasall[i][2]; } } /* ---------------------------------------------------------------------- */ double ComputeTempRotate::memory_usage() { double bytes = maxbias * sizeof(double); return bytes; }