/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "angle_sdk_omp.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include #include "lj_sdk_common.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace LJSDKParms; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleSDKOMP::AngleSDKOMP(class LAMMPS *lmp) : AngleSDK(lmp), ThrOMP(lmp,THR_ANGLE) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void AngleSDKOMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->nanglelist; #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void AngleSDKOMP::eval(int nfrom, int nto, ThrData * const thr) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3; double eangle,f1[3],f3[3],e13,f13; double dtheta,tk; double rsq1,rsq2,rsq3,r1,r2,c,s,a,a11,a12,a22; const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0]; dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0]; const int4_t * _noalias const anglelist = (int4_t *) neighbor->anglelist[0]; const int nlocal = atom->nlocal; for (n = nfrom; n < nto; n++) { i1 = anglelist[n].a; i2 = anglelist[n].b; i3 = anglelist[n].c; type = anglelist[n].t; // 1st bond delx1 = x[i1].x - x[i2].x; dely1 = x[i1].y - x[i2].y; delz1 = x[i1].z - x[i2].z; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3].x - x[i2].x; dely2 = x[i3].y - x[i2].y; delz2 = x[i3].z - x[i2].z; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // 1-3 LJ interaction. // we only want to use the repulsive part, // and it can be scaled (or off). // so this has to be done here and not in the // general non-bonded code. f13 = e13 = delx3 = dely3 = delz3 = 0.0; if (repflag) { delx3 = x[i1].x - x[i3].x; dely3 = x[i1].y - x[i3].y; delz3 = x[i1].z - x[i3].z; rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3; const int type1 = atom->type[i1]; const int type3 = atom->type[i3]; if (rsq3 < rminsq[type1][type3]) { const int ljt = lj_type[type1][type3]; const double r2inv = 1.0/rsq3; if (ljt == LJ12_4) { const double r4inv=r2inv*r2inv; f13 = r4inv*(lj1[type1][type3]*r4inv*r4inv - lj2[type1][type3]); if (EFLAG) e13 = r4inv*(lj3[type1][type3]*r4inv*r4inv - lj4[type1][type3]); } else if (ljt == LJ9_6) { const double r3inv = r2inv*sqrt(r2inv); const double r6inv = r3inv*r3inv; f13 = r6inv*(lj1[type1][type3]*r3inv - lj2[type1][type3]); if (EFLAG) e13 = r6inv*(lj3[type1][type3]*r3inv - lj4[type1][type3]); } else if (ljt == LJ12_6) { const double r6inv = r2inv*r2inv*r2inv; f13 = r6inv*(lj1[type1][type3]*r6inv - lj2[type1][type3]); if (EFLAG) e13 = r6inv*(lj3[type1][type3]*r6inv - lj4[type1][type3]); } // make sure energy is 0.0 at the cutoff. if (EFLAG) e13 -= emin[type1][type3]; f13 *= r2inv; } } // force & energy dtheta = acos(c) - theta0[type]; tk = k[type] * dtheta; if (EFLAG) eangle = tk*dtheta; a = -2.0 * tk * s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of the 3 atoms if (NEWTON_BOND || i1 < nlocal) { f[i1].x += f1[0] + f13*delx3; f[i1].y += f1[1] + f13*dely3; f[i1].z += f1[2] + f13*delz3; } if (NEWTON_BOND || i2 < nlocal) { f[i2].x -= f1[0] + f3[0]; f[i2].y -= f1[1] + f3[1]; f[i2].z -= f1[2] + f3[2]; } if (NEWTON_BOND || i3 < nlocal) { f[i3].x += f3[0] - f13*delx3; f[i3].y += f3[1] - f13*dely3; f[i3].z += f3[2] - f13*delz3; } if (EVFLAG) { ev_tally_thr(this,i1,i2,i3,nlocal,NEWTON_BOND,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2,thr); if (repflag) ev_tally13_thr(this,i1,i3,nlocal,NEWTON_BOND, e13,f13,delx3,dely3,delz3,thr); } } }