/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define MY_PREFIX atom_vec_cuda #include "cuda_shared.h" #include "cuda_common.h" #include "cuda_wrapper_cu.h" #include "crm_cuda_utils.cu" #include "atom_vec_cuda_kernel.cu" int AtomVecCuda_CountDataItems(unsigned int data_mask) { int n = 0; if(data_mask & X_MASK) n += 3; if(data_mask & V_MASK) n += 3; if(data_mask & F_MASK) n += 3; if(data_mask & TAG_MASK) n++; if(data_mask & TYPE_MASK) n++; if(data_mask & MASK_MASK) n++; if(data_mask & IMAGE_MASK) n++; if(data_mask & Q_MASK) n++; if(data_mask & MOLECULE_MASK) n++; if(data_mask & RMASS_MASK) n++; if(data_mask & RADIUS_MASK) n++; if(data_mask & DENSITY_MASK) n++; if(data_mask & OMEGA_MASK) n += 3; if(data_mask & TORQUE_MASK) n++; //if(data_mask & NSPECIAL_MASK) n+=3; return n; } void Cuda_AtomVecCuda_UpdateBuffer(cuda_shared_data* sdata, int size) { if(sdata->buffersize < size) { MYDBG(printf("Cuda_AtomVecCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);) CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize); sdata->buffer = CudaWrapper_AllocCudaData(size); sdata->buffersize = size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);) } cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*)); } template void Cuda_AtomVecCuda_UpdateNmax(cuda_shared_data* sdata) { cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int)); cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(image) , & sdata->atom.image.dev_data, sizeof(int*)); if(data_mask & Q_MASK) cudaMemcpyToSymbol(MY_AP(q) , & sdata->atom.q .dev_data, sizeof(F_CFLOAT*)); if(data_mask & MOLECULE_MASK) cudaMemcpyToSymbol(MY_AP(molecule) , & sdata->atom.molecule.dev_data, sizeof(int*)); if(data_mask & RADIUS_MASK) cudaMemcpyToSymbol(MY_AP(radius) , & sdata->atom.radius.dev_data, sizeof(int*)); if(data_mask & DENSITY_MASK) cudaMemcpyToSymbol(MY_AP(density) , & sdata->atom.density.dev_data, sizeof(int*)); if(data_mask & RMASS_MASK) cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass.dev_data, sizeof(int*)); if(data_mask & OMEGA_MASK) cudaMemcpyToSymbol(MY_AP(omega) , & sdata->atom.omega.dev_data, sizeof(int*)); //if(data_mask & NSPECIAL_MASK) cudaMemcpyToSymbol(MY_AP(nspecial) , & sdata->atom.nspecial.dev_data, sizeof(int*) ); cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*)); } template void Cuda_AtomVecCuda_Init(cuda_shared_data* sdata) { MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... start\n");) if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... post Nmax\n");) cudaMemcpyToSymbol(MY_AP(prd) , sdata->domain.prd, 3 * sizeof(X_CFLOAT)); cudaMemcpyToSymbol(MY_AP(sublo) , & sdata->domain.sublo, 3 * sizeof(X_CFLOAT)); cudaMemcpyToSymbol(MY_AP(subhi) , & sdata->domain.subhi, 3 * sizeof(X_CFLOAT)); cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*)); cudaThreadSynchronize(); MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... end\n");) } template int Cuda_AtomVecCuda_PackComm(cuda_shared_data* sdata, int n, int iswap, void* buf_send, int* pbc, int pbc_flag) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = (n * n_data_items) * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); X_CFLOAT dx = 0.0; X_CFLOAT dy = 0.0; X_CFLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { cudaMemset(sdata->flag, 0, sizeof(int)); my_gettime(CLOCK_REALTIME, &time1); void* buf = sdata->overlap_comm ? sdata->comm.buf_send_dev[iswap] : sdata->buffer; Cuda_AtomVecCuda_PackComm_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n , sdata->comm.maxlistlength, iswap, dx, dy, dz, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n* n_data_items* sizeof(X_CFLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_CFLOAT), cudaMemcpyDeviceToHost); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag != 0) printf("aflag PackComm: %i\n", aflag); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed"); } return n_data_items * n; } template int Cuda_AtomVecCuda_PackComm_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag) { MYDBG(printf(" # CUDA: AtomVecCuda_PackComm_Self\n");) my_times time1, time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = (n * n_data_items) * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); static int count = -1; count++; X_CFLOAT dx = 0.0; X_CFLOAT dy = 0.0; X_CFLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self:Pre Kernel execution failed"); Cuda_AtomVecCuda_PackComm_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_self += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self: Kernel execution failed"); } return n_data_items * n; } template void Cuda_AtomVecCuda_UnpackComm(cuda_shared_data* sdata, int n, int first, void* buf_recv, int iswap) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = (n * n_data_items) * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); if(not sdata->overlap_comm || iswap < 0) cudaMemcpy(sdata->buffer, (void*)buf_recv, n_data_items * n * sizeof(X_CFLOAT), cudaMemcpyHostToDevice); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_upload += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; void* buf = (sdata->overlap_comm && iswap >= 0) ? sdata->comm.buf_recv_dev[iswap] : sdata->buffer; Cuda_AtomVecCuda_UnpackComm_Kernel <<< grid, threads, 0>>>(n, first, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_kernel_unpack += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackComm: Kernel execution failed"); } } template int Cuda_AtomVecCuda_PackExchangeList(cuda_shared_data* sdata, int n, int dim, void* buf_send) { MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... start dim %i \n", dim);) CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: pre Kernel execution failed"); cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); Cuda_AtomVecCuda_Init(sdata); int size = n * sizeof(double); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); cudaMemset((int*)(sdata->buffer), 0, sizeof(int)); int3 layout = getgrid(sdata->atom.nlocal, sizeof(int), 256, true); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); Cuda_AtomVecCuda_PackExchangeList_Kernel <<< grid, threads, (threads.x + 1)*sizeof(int) >>> (n - 1, dim); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: Kernel execution failed"); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_exchange_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; cudaMemcpy(buf_send, sdata->buffer, sizeof(double), cudaMemcpyDeviceToHost); int return_value = ((int*) buf_send)[0]; if(n > 1 + return_value) cudaMemcpy(buf_send, sdata->buffer, (1 + return_value)*sizeof(double), cudaMemcpyDeviceToHost); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: return copy failed"); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_exchange_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... done\n");) return return_value; } template int Cuda_AtomVecCuda_PackExchange(cuda_shared_data* sdata, int nsend, void* buf_send, void* copylist) { MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... start \n");) if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); //if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask) + 1; int size = (nsend * n_data_items + 1) * sizeof(double); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); cudaMemset((int*)(sdata->buffer), 0, sizeof(int)); int3 layout = getgrid(nsend, 0); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); Cuda_AtomVecCuda_PackExchange_Kernel <<< grid, threads, 0>>>(nsend, (int*) copylist); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchange: Kernel execution failed"); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_exchange_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_exchange_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... done\n");) return nsend * n_data_items + 1; } template int Cuda_AtomVecCuda_UnpackExchange(cuda_shared_data* sdata, int nsend, void* buf_send, void* copylist) { Cuda_AtomVecCuda_UpdateNmax(sdata); cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask) + 1; int size = (nsend * n_data_items + 1) * sizeof(double); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*)); cudaMemset((int*)(sdata->flag), 0, sizeof(int)); if(nsend) { int3 layout = getgrid(nsend, 0); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); cudaMemcpy(sdata->buffer, buf_send , size, cudaMemcpyHostToDevice); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_exchange_upload += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; Cuda_AtomVecCuda_UnpackExchange_Kernel <<< grid, threads, 0>>>(sdata->exchange_dim, nsend, (int*) copylist); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_exchange_kernel_unpack += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackExchange: Kernel execution failed"); } } int naccept; cudaMemcpy((void*)&naccept, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); return naccept; } template int Cuda_AtomVecCuda_PackBorder(cuda_shared_data* sdata, int nsend, int iswap, void* buf_send, int* pbc, int pbc_flag) { my_times atime1, atime2; my_gettime(CLOCK_REALTIME, &atime1); if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); my_gettime(CLOCK_REALTIME, &atime2); sdata->cuda_timings.test1 += atime2.tv_sec - atime1.tv_sec + 1.0 * (atime2.tv_nsec - atime1.tv_nsec) / 1000000000; int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = nsend * n_data_items * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); X_CFLOAT dx = 0.0; X_CFLOAT dy = 0.0; X_CFLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; } } int3 layout = getgrid(nsend); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); Cuda_AtomVecCuda_PackBorder_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, nsend, sdata->comm.maxlistlength, iswap, dx, dy, dz); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_border_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder: Kernel execution failed"); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_border_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; } return nsend * n_data_items; } template int Cuda_AtomVecCuda_PackBorder_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag) { if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = n * n_data_items * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); X_CFLOAT dx = 0.0; X_CFLOAT dy = 0.0; X_CFLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); Cuda_AtomVecCuda_PackBorder_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_border_kernel_self += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder_Self: Kernel execution failed"); } return n * n_data_items; } template int Cuda_AtomVecCuda_UnpackBorder(cuda_shared_data* sdata, int n, int first, void* buf_recv) { my_times atime1, atime2; my_gettime(CLOCK_REALTIME, &atime1); if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); my_gettime(CLOCK_REALTIME, &atime2); sdata->cuda_timings.test1 += atime2.tv_sec - atime1.tv_sec + 1.0 * (atime2.tv_nsec - atime1.tv_nsec) / 1000000000; int n_data_items = AtomVecCuda_CountDataItems(data_mask); int size = n * n_data_items * sizeof(X_CFLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata, size); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_times time1, time2; my_gettime(CLOCK_REALTIME, &time1); cudaMemset((int*)(sdata->flag), 0, sizeof(int)); cudaMemcpy(sdata->buffer, (void*)buf_recv, size, cudaMemcpyHostToDevice); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_border_upload += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; Cuda_AtomVecCuda_UnpackBorder_Kernel <<< grid, threads, 0>>>(n, first); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_border_kernel_unpack += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; cudaMemcpy(&sdata->comm.grow_flag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackBorder: Kernel execution failed"); } return sdata->comm.grow_flag; } #include "atom_vec_angle_cuda.cu" #include "atom_vec_atomic_cuda.cu" #include "atom_vec_charge_cuda.cu" #include "atom_vec_full_cuda.cu" //#include "atom_vec_granular_cuda.cu"