# Pizza.py toolkit, https://lammps.github.io/pizza # LAMMPS development team: developers@lammps.org # # Copyright (2005) Sandia Corporation. Under the terms of Contract # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains # certain rights in this software. This software is distributed under # the GNU General Public License. # for python3 compatibility from __future__ import print_function # dump tool oneline = "Read, write, manipulate dump files and particle attributes" docstr = """ d = dump("dump.one") read in one or more dump files d = dump("dump.1 dump.2.gz") can be gzipped d = dump("dump.*") wildcard expands to multiple files d = dump("dump.*",0) two args = store filenames, but don't read incomplete and duplicate snapshots are deleted if atoms have 5 or 8 columns, assign id,type,x,y,z (ix,iy,iz) atoms will be unscaled if stored in files as scaled time = d.next() read next snapshot from dump files used with 2-argument constructor to allow reading snapshots one-at-a-time snapshot will be skipped only if another snapshot has same time stamp return time stamp of snapshot read return -1 if no snapshots left or last snapshot is incomplete no column name assignment or unscaling is performed d.map(1,"id",3,"x") assign names to atom columns (1-N) not needed if dump file is self-describing d.tselect.all() select all timesteps d.tselect.one(N) select only timestep N d.tselect.one(N1,N2,N3) select only timestep N1,N2,N3 d.tselect.none() deselect all timesteps d.tselect.skip(M) select every Mth step d.tselect.test("$t >= 100 and $t < 10000") select matching timesteps d.delete() delete non-selected timesteps selecting a timestep also selects all atoms in the timestep skip() and test() only select from currently selected timesteps test() uses a Python Boolean expression with $t for timestep value Python comparison syntax: == != < > <= >= and or d.aselect.all() select all atoms in all steps d.aselect.all(N) select all atoms in one step d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step all() with no args selects atoms from currently selected timesteps test() with one arg selects atoms from currently selected timesteps test() sub-selects from currently selected atoms test() uses a Python Boolean expression with $ for atom attributes Python comparison syntax: == != < > <= >= and or $name must end with a space d.write("file") write selected steps/atoms to dump file d.write("file",head,app) write selected steps/atoms to dump file d.scatter("tmp") write selected steps/atoms to multiple files write() can be specified with 2 additional flags headd = 0/1 for no/yes snapshot header, app = 0/1 for write vs append scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc d.scale() scale x,y,z to 0-1 for all timesteps d.scale(100) scale atom coords for timestep N d.unscale() unscale x,y,z to box size to all timesteps d.unscale(1000) unscale atom coords for timestep N d.wrap() wrap x,y,z into periodic box via ix,iy,iz d.unwrap() unwrap x,y,z out of box via ix,iy,iz d.owrap("other") wrap x,y,z to same image as another atom d.sort() sort atoms by atom ID in all selected steps d.sort("x") sort atoms by column value in all steps d.sort(1000) sort atoms in timestep N scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms wrap(), unwrap(), owrap() require ix,iy,iz be defined owrap() requires a column be defined which contains an atom ID name of that column is the argument to owrap() x,y,z for each atom is wrapped to same image as the associated atom ID useful for wrapping all molecule's atoms the same so it is contiguous m1,m2 = d.minmax("type") find min/max values for a column d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value d.setv("type",vector) set a column to a vector of values d.spread("ke",N,"color") 2nd col = N ints spread over 1st col d.clone(1000,"color") clone timestep N values to other steps minmax() operates on selected timesteps and atoms set() operates on selected timesteps and atoms left hand side column is created if necessary left-hand side column is unset or unchanged for non-selected atoms equation is in Python syntax use $ for column names, $name must end with a space setv() operates on selected timesteps and atoms if column label does not exist, column is created values in vector are assigned sequentially to atoms, so may want to sort() length of vector must match # of selected atoms spread() operates on selected timesteps and atoms min and max are found for 1st specified column across all selected atoms atom's value is linear mapping (1-N) between min and max that is stored in 2nd column (created if needed) useful for creating a color map clone() operates on selected timesteps and atoms values at every timestep are set to value at timestep N for that atom ID useful for propagating a color map t = d.time() return vector of selected timestep values fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N atom() returns vectors with one value for each selected timestep vecs() returns vectors with one value for each selected atom in the timestep index,time,flag = d.iterator(0/1) loop over dump snapshots time,box,atoms,bonds,tris = d.viz(index) return list of viz objects d.atype = "color" set column returned as "type" by viz d.extra("dump.bond") read bond list from dump file d.extra(data) extract bond/tri/line list from data iterator() loops over selected timesteps iterator() called with arg = 0 first time, with arg = 1 on subsequent calls index = index within dump object (0 to # of snapshots) time = timestep value flag = -1 when iteration is done, 1 otherwise viz() returns info for selected atoms for specified timestep index time = timestep value box = [xlo,ylo,zlo,xhi,yhi,zhi] atoms = id,type,x,y,z for each atom as 2d array bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array if bonds() was used to define bonds, else empty list tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array if extra() was used to define tris, else empty list lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array if extra() was used to define lines, else empty list atype is column name viz() will return as atom type (def = "type") extra() stores list of bonds/tris/lines to return each time viz() is called """ # History # 8/05, Steve Plimpton (SNL): original version # 12/09, David Hart (SNL): allow use of NumPy or Numeric # 03/17, Richard Berger (Temple U): improve Python 3 compatibility, # simplify read_snapshot by using reshape # 08/22, Axel Kohlmeyer (Temple U): remove Numeric, more Python 2/3 compatibility # ToDo list # try to optimize this line in read_snap: words += f.readline().split() # allow $name in aselect.test() and set() to end with non-space # should next() snapshot be auto-unscaled ? # Variables # flist = list of dump file names # increment = 1 if reading snapshots one-at-a-time # nextfile = which file to read from via next() # eof = ptr into current file for where to read via next() # nsnaps = # of snapshots # nselect = # of selected snapshots # snaps = list of snapshots # names = dictionary of column names: # key = "id", value = column # (0 to M-1) # tselect = class for time selection # aselect = class for atom selection # atype = name of vector used as atom type by viz extract # bondflag = 0 if no bonds, 1 if they are defined statically # bondlist = static list of bonds to viz() return for all snapshots # only a list of atom pairs, coords have to be created for each snapshot # triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic # trilist = static list of tris to return via viz() for all snapshots # lineflag = 0 if no lines, 1 if they are defined statically # linelist = static list of lines to return via viz() for all snapshots # Snap = one snapshot # time = time stamp # tselect = 0/1 if this snapshot selected # natoms = # of atoms # nselect = # of selected atoms in this snapshot # aselect[i] = 0/1 for each atom # xlo,xhi,ylo,yhi,zlo,zhi = box bounds (float) # atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1 # Imports and external programs import sys, re, glob, types from os import popen from math import * # any function could be used by set() import numpy as np try: from DEFAULTS import PIZZA_GUNZIP except: PIZZA_GUNZIP = "gunzip" # -------------------------------------------------------------------- # wrapper to convert old style comparision function to key function def cmp2key(oldcmp): class keycmp: def __init__(self, obj, *args): self.obj = obj def __lt__(self, other): return oldcmp(self.obj,other.obj) < 0 def __gt__(self, other): return oldcmp(self.obj,other.obj) > 0 def __eq__(self, other): return oldcmp(self.obj,other.obj) == 0 return keycmp # Class definition class dump: # -------------------------------------------------------------------- def __init__(self,*list): self.snaps = [] self.nsnaps = self.nselect = 0 self.names = {} self.tselect = tselect(self) self.aselect = aselect(self) self.atype = "type" self.bondflag = 0 self.bondlist = [] self.triflag = 0 self.trilist = [] self.triobj = 0 self.lineflag = 0 self.linelist = [] # flist = list of all dump file names words = list[0].split() self.flist = [] for word in words: self.flist += glob.glob(word) if len(self.flist) == 0 and len(list) == 1: raise Exception("no dump file specified") if len(list) == 1: self.increment = 0 self.read_all() else: self.increment = 1 self.nextfile = 0 self.eof = 0 # -------------------------------------------------------------------- def read_all(self): # read all snapshots from each file # test for gzipped files for file in self.flist: if file[-3:] == ".gz": f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r') else: f = open(file) snap = self.read_snapshot(f) while snap: self.snaps.append(snap) print(snap.time,end=' ') sys.stdout.flush() snap = self.read_snapshot(f) f.close() print() # sort entries by timestep, cull duplicates self.snaps.sort(key=cmp2key(self.compare_time)) self.cull() self.nsnaps = len(self.snaps) print("read %d snapshots" % self.nsnaps) # select all timesteps and atoms self.tselect.all() # set default names for atom columns if file wasn't self-describing if len(self.snaps) == 0: print("no column assignments made") elif len(self.names): print("assigned columns:",self.names2str()) elif self.snaps[0].atoms is None: print("no column assignments made") elif len(self.snaps[0].atoms[0]) == 5: self.map(1,"id",2,"type",3,"x",4,"y",5,"z") print("assigned columns:",self.names2str()) elif len(self.snaps[0].atoms[0]) == 8: self.map(1,"id",2,"type",3,"x",4,"y",5,"z",6,"ix",7,"iy",8,"iz") print("assigned columns:",self.names2str()) else: print("no column assignments made") # if snapshots are scaled, unscale them if ("x" not in self.names) or \ ("y" not in self.names) or \ ("z" not in self.names): print("no unscaling could be performed") elif self.nsnaps > 0: if self.scaled(self.nsnaps-1): self.unscale() else: print("dump is already unscaled") # -------------------------------------------------------------------- # read next snapshot from list of files def next(self): if not self.increment: raise Exception("cannot read incrementally") # read next snapshot in current file using eof as pointer # if fail, try next file # if new snapshot time stamp already exists, read next snapshot while True: f = open(self.flist[self.nextfile],'r') f.seek(self.eof) snap = self.read_snapshot(f) if not snap: self.nextfile += 1 if self.nextfile == len(self.flist): return -1 f.close() self.eof = 0 continue self.eof = f.tell() f.close() try: self.findtime(snap.time) continue except: break # select the new snapshot with all its atoms self.snaps.append(snap) snap = self.snaps[self.nsnaps] snap.tselect = 1 snap.nselect = snap.natoms for i in range(snap.natoms): snap.aselect[i] = 1 self.nsnaps += 1 self.nselect += 1 return snap.time # -------------------------------------------------------------------- # read a single snapshot from file f # return snapshot or 0 if failed # assign column names if not already done and file is self-describing # convert xs,xu to x def read_snapshot(self,f): try: snap = Snap() snap.units = 'unknown' snap.stime = -1.0 # read until hitting next "TIMESTEP" item while True: try: item = f.readline().split() if item[0] == 'ITEM:' and item[1] == 'UNITS': snap.units = f.readline().split()[0] if item[0] == 'ITEM:' and item[1] == 'TIME': snap.time = f.readline().split()[0] if item[0] == 'ITEM:' and item[1] == 'TIMESTEP': break except: return snap.time = int(f.readline().split()[0]) # just grab 1st field item = f.readline() snap.natoms = int(f.readline()) snap.aselect = np.zeros(snap.natoms) item = f.readline() words = f.readline().split() snap.xlo,snap.xhi = float(words[0]),float(words[1]) words = f.readline().split() snap.ylo,snap.yhi = float(words[0]),float(words[1]) words = f.readline().split() snap.zlo,snap.zhi = float(words[0]),float(words[1]) item = f.readline() if len(self.names) == 0: words = item.split()[2:] if len(words): for i in range(len(words)): if words[i] == "xs" or words[i] == "xu": self.names["x"] = i elif words[i] == "ys" or words[i] == "yu": self.names["y"] = i elif words[i] == "zs" or words[i] == "zu": self.names["z"] = i else: self.names[words[i]] = i if snap.natoms: words = f.readline().split() ncol = len(words) for i in range(1,snap.natoms): words += f.readline().split() floats = map(float,words) atom_data = np.array(list(floats),float) snap.atoms = atom_data.reshape((snap.natoms, ncol)) else: snap.atoms = None return snap except: return None # -------------------------------------------------------------------- # decide if snapshot i is scaled/unscaled from coords of first and last atom def scaled(self,i): ix = self.names["x"] iy = self.names["y"] iz = self.names["z"] natoms = self.snaps[i].natoms if natoms == 0: return 0 x1 = self.snaps[i].atoms[0][ix] y1 = self.snaps[i].atoms[0][iy] z1 = self.snaps[i].atoms[0][iz] x2 = self.snaps[i].atoms[natoms-1][ix] y2 = self.snaps[i].atoms[natoms-1][iy] z2 = self.snaps[i].atoms[natoms-1][iz] if x1 >= -0.1 and x1 <= 1.1 and y1 >= -0.1 and y1 <= 1.1 and \ z1 >= -0.1 and z1 <= 1.1 and x2 >= -0.1 and x2 <= 1.1 and \ y2 >= -0.1 and y2 <= 1.1 and z2 >= -0.1 and z2 <= 1.1: return 1 else: return 0 # -------------------------------------------------------------------- # map atom column names def map(self,*pairs): if len(pairs) % 2 != 0: raise Exception("dump map() requires pairs of mappings") for i in range(0,len(pairs),2): j = i + 1 self.names[pairs[j]] = pairs[i]-1 # delete unselected snapshots # -------------------------------------------------------------------- def delete(self): ndel = i = 0 while i < self.nsnaps: if not self.snaps[i].tselect: del self.snaps[i] self.nsnaps -= 1 ndel += 1 else: i += 1 print("%d snapshots deleted" % ndel) print("%d snapshots remaining" % self.nsnaps) # -------------------------------------------------------------------- # scale coords to 0-1 for all snapshots or just one def scale(self,*list): if len(list) == 0: print("Scaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.scale_one(snap,x,y,z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.scale_one(self.snaps[i],x,y,z) # -------------------------------------------------------------------- def scale_one(self,snap,x,y,z): xprdinv = 1.0 / (snap.xhi - snap.xlo) yprdinv = 1.0 / (snap.yhi - snap.ylo) zprdinv = 1.0 / (snap.zhi - snap.zlo) atoms = snap.atoms atoms[:,x] = (atoms[:,x] - snap.xlo) * xprdinv atoms[:,y] = (atoms[:,y] - snap.ylo) * yprdinv atoms[:,z] = (atoms[:,z] - snap.zlo) * zprdinv # -------------------------------------------------------------------- # unscale coords from 0-1 to box size for all snapshots or just one def unscale(self,*list): if len(list) == 0: print("Unscaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.unscale_one(snap,x,y,z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.unscale_one(self.snaps[i],x,y,z) # -------------------------------------------------------------------- def unscale_one(self,snap,x,y,z): xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:,x] = snap.xlo + atoms[:,x]*xprd atoms[:,y] = snap.ylo + atoms[:,y]*yprd atoms[:,z] = snap.zlo + atoms[:,z]*zprd # -------------------------------------------------------------------- # wrap coords from outside box to inside def wrap(self): print("Wrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:,x] -= atoms[:,ix]*xprd atoms[:,y] -= atoms[:,iy]*yprd atoms[:,z] -= atoms[:,iz]*zprd # -------------------------------------------------------------------- # unwrap coords from inside box to outside def unwrap(self): print("Unwrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:,x] += atoms[:,ix]*xprd atoms[:,y] += atoms[:,iy]*yprd atoms[:,z] += atoms[:,iz]*zprd # -------------------------------------------------------------------- # wrap coords to same image as atom ID stored in "other" column def owrap(self,other): print("Wrapping to other ...") id = self.names["id"] x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] iother = self.names[other] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms ids = {} for i in range(snap.natoms): ids[atoms[i][id]] = i for i in range(snap.natoms): j = ids[atoms[i][iother]] atoms[i][x] += (atoms[i][ix]-atoms[j][ix])*xprd atoms[i][y] += (atoms[i][iy]-atoms[j][iy])*yprd atoms[i][z] += (atoms[i][iz]-atoms[j][iz])*zprd # -------------------------------------------------------------------- # convert column names assignment to a string, in column order def names2str(self): ncol = len(self.snaps[0].atoms[0]) pairs = self.names.items() str = "" for i in range(ncol): for k,v in pairs: if v == i: str += k + ' ' return str # -------------------------------------------------------------------- # sort atoms by atom ID in all selected timesteps by default # if arg = string, sort all steps by that column # if arg = numeric, sort atoms in single step def sort(self,*list): if len(list) == 0: print("Sorting selected snapshots ...") id = self.names["id"] for snap in self.snaps: if snap.tselect: self.sort_one(snap,id) elif type(list[0]) is types.StringType: print("Sorting selected snapshots by %s ..." % list[0]) id = self.names[list[0]] for snap in self.snaps: if snap.tselect: self.sort_one(snap,id) else: i = self.findtime(list[0]) id = self.names["id"] self.sort_one(self.snaps[i],id) # -------------------------------------------------------------------- # sort a single snapshot by ID column def sort_one(self,snap,id): atoms = snap.atoms ids = atoms[:,id] ordering = np.argsort(ids) for i in range(len(atoms[0])): atoms[:,i] = np.take(atoms[:,i],ordering) # -------------------------------------------------------------------- # write a single dump file from current selection def write(self,file,header=1,append=0): if len(self.snaps): namestr = self.names2str() if not append: f = open(file,"w") else: f = open(file,"a") for snap in self.snaps: if not snap.tselect: continue print(snap.time,end=' ') sys.stdout.flush() if header: print("ITEM: TIMESTEP",file=f) print(snap.time,file=f) print("ITEM: NUMBER OF ATOMS",file=f) print(snap.nselect,file=f) print("ITEM: BOX BOUNDS",file=f) print(snap.xlo,snap.xhi,file=f) print(snap.ylo,snap.yhi,file=f) print(snap.zlo,snap.zhi,file=f) print("ITEM: ATOMS",namestr,file=f) atoms = snap.atoms nvalues = len(atoms[0]) keys = dict() for pair in self.names.items(): keys[pair[1]] = pair[0] for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if keys[j] == 'id' or keys[j] == 'type' or keys[j] == 'mol': line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line,file=f) f.close() print("\n%d snapshots" % self.nselect) # -------------------------------------------------------------------- # write one dump file per snapshot from current selection def scatter(self,root): if len(self.snaps): namestr = self.names2str() for snap in self.snaps: if not snap.tselect: continue print(snap.time,end=' ') sys.stdout.flush() file = root + "." + str(snap.time) f = open(file,"w") print("ITEM: TIMESTEP",file=f) print(snap.time,file=f) print("ITEM: NUMBER OF ATOMS",file=f) print(snap.nselect,file=f) print("ITEM: BOX BOUNDS",file=f) print(snap.xlo,snap.xhi,file=f) print(snap.ylo,snap.yhi,file=f) print(snap.zlo,snap.zhi,file=f) print("ITEM: ATOMS",namestr,file=f) atoms = snap.atoms nvalues = len(atoms[0]) for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if (j < 2): line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line,file=f) f.close() print("\n%d snapshots" % self.nselect) # -------------------------------------------------------------------- # find min/max across all selected snapshots/atoms for a particular column def minmax(self,colname): icol = self.names[colname] min = 1.0e20 max = -min for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] < min: min = atoms[i][icol] if atoms[i][icol] > max: max = atoms[i][icol] return (min,max) # -------------------------------------------------------------------- # set a column value via an equation for all selected snapshots def set(self,eq): print("Setting ...") pattern = "\$\w*" list = re.findall(pattern,eq) lhs = list[0][1:] if not lhs in self.names: self.newcolumn(lhs) for item in list: name = item[1:] column = self.names[name] insert = "snap.atoms[i][%d]" % (column) eq = eq.replace(item,insert) ceq = compile(eq,'','single') for snap in self.snaps: if not snap.tselect: continue for i in range(snap.natoms): if snap.aselect[i]: exec(ceq) # -------------------------------------------------------------------- # set a column value via an input vec for all selected snapshots/atoms def setv(self,colname,vec): print("Setting ...") if not colname in self.names: self.newcolumn(colname) icol = self.names[colname] for snap in self.snaps: if not snap.tselect: continue if snap.nselect != len(vec): raise Exception("vec length does not match # of selected atoms") atoms = snap.atoms m = 0 for i in range(snap.natoms): if snap.aselect[i]: atoms[i][icol] = vec[m] m += 1 # -------------------------------------------------------------------- # clone value in col across selected timesteps for atoms with same ID def clone(self,nstep,col): istep = self.findtime(nstep) icol = self.names[col] id = self.names["id"] ids = {} for i in range(self.snaps[istep].natoms): ids[self.snaps[istep].atoms[i][id]] = i for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue j = ids[atoms[i][id]] atoms[i][icol] = self.snaps[istep].atoms[j][icol] # -------------------------------------------------------------------- # values in old column are spread as ints from 1-N and assigned to new column def spread(self,old,n,new): iold = self.names[old] if not new in self.names: self.newcolumn(new) inew = self.names[new] min,max = self.minmax(old) print("min/max = ",min,max) gap = max - min invdelta = n/gap for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue ivalue = int((atoms[i][iold] - min) * invdelta) + 1 if ivalue > n: ivalue = n if ivalue < 1: ivalue = 1 atoms[i][inew] = ivalue # -------------------------------------------------------------------- # return vector of selected snapshot time stamps def time(self): vec = self.nselect * [0] i = 0 for snap in self.snaps: if not snap.tselect: continue vec[i] = snap.time i += 1 return vec # -------------------------------------------------------------------- # extract vector(s) of values for atom ID n at each selected timestep def atom(self,n,*list): if len(list) == 0: raise Exception("no columns specified") columns = [] values = [] for name in list: columns.append(self.names[name]) values.append(self.nselect * [0]) ncol = len(columns) id = self.names["id"] m = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if atoms[i][id] == n: break if atoms[i][id] != n: raise Exception("could not find atom ID in snapshot") for j in range(ncol): values[j][m] = atoms[i][columns[j]] m += 1 if len(list) == 1: return values[0] else: return values # -------------------------------------------------------------------- # extract vector(s) of values for selected atoms at chosen timestep def vecs(self,n,*list): snap = self.snaps[self.findtime(n)] if len(list) == 0: raise Exception("no columns specified") columns = [] values = [] for name in list: columns.append(self.names[name]) values.append(snap.nselect * [0]) ncol = len(columns) m = 0 for i in range(snap.natoms): if not snap.aselect[i]: continue for j in range(ncol): values[j][m] = snap.atoms[i][columns[j]] m += 1 if len(list) == 1: return values[0] else: return values # -------------------------------------------------------------------- # add a new column to every snapshot and set value to 0 # set the name of the column to str def newcolumn(self,str): ncol = len(self.snaps[0].atoms[0]) self.map(ncol+1,str) for snap in self.snaps: atoms = snap.atoms newatoms = np.zeros((snap.natoms,ncol+1),np.float) newatoms[:,0:ncol] = snap.atoms snap.atoms = newatoms # -------------------------------------------------------------------- # sort snapshots on time stamp def compare_time(self,a,b): if a.time < b.time: return -1 elif a.time > b.time: return 1 else: return 0 # -------------------------------------------------------------------- # delete successive snapshots with duplicate time stamp def cull(self): i = 1 while i < len(self.snaps): if self.snaps[i].time == self.snaps[i-1].time: del self.snaps[i] else: i += 1 # -------------------------------------------------------------------- # iterate over selected snapshots def iterator(self,flag): start = 0 if flag: start = self.iterate + 1 for i in range(start,self.nsnaps): if self.snaps[i].tselect: self.iterate = i return i,self.snaps[i].time,1 return 0,0,-1 # -------------------------------------------------------------------- # return list of atoms to viz for snapshot isnap # augment with bonds, tris, lines if extra() was invoked def viz(self,isnap): snap = self.snaps[isnap] time = snap.time box = [snap.xlo,snap.ylo,snap.zlo,snap.xhi,snap.yhi,snap.zhi] id = self.names["id"] type = self.names[self.atype] x = self.names["x"] y = self.names["y"] z = self.names["z"] # create atom list needed by viz from id,type,x,y,z # need Numeric/Numpy mode here atoms = [] for i in range(snap.natoms): if not snap.aselect[i]: continue atom = snap.atoms[i] atoms.append([atom[id],atom[type],atom[x],atom[y],atom[z]]) # create list of current bond coords from static bondlist # alist = dictionary of atom IDs for atoms list # lookup bond atom IDs in alist and grab their coords # try is used since some atoms may be unselected # any bond with unselected atom is not returned to viz caller # need Numeric/Numpy mode here bonds = [] if self.bondflag: alist = {} for i in range(len(atoms)): alist[int(atoms[i][0])] = i for bond in self.bondlist: try: i = alist[bond[2]] j = alist[bond[3]] atom1 = atoms[i] atom2 = atoms[j] bonds.append([bond[0],bond[1],atom1[2],atom1[3],atom1[4], atom2[2],atom2[3],atom2[4],atom1[1],atom2[1]]) except: continue tris = [] if self.triflag: if self.triflag == 1: tris = self.trilist elif self.triflag == 2: timetmp,boxtmp,atomstmp,bondstmp, \ tris,linestmp = self.triobj.viz(time,1) lines = [] if self.lineflag: lines = self.linelist return time,box,atoms,bonds,tris,lines # -------------------------------------------------------------------- def findtime(self,n): for i, snap in enumerate(self.snaps): if snap.time == n: return i raise Exception("no step %d exists" % n) # -------------------------------------------------------------------- # return maximum box size across all selected snapshots def maxbox(self): xlo = ylo = zlo = None xhi = yhi = zhi = None for snap in self.snaps: if not snap.tselect: continue if xlo is None or snap.xlo < xlo: xlo = snap.xlo if xhi is None or snap.xhi > xhi: xhi = snap.xhi if ylo is None or snap.ylo < ylo: ylo = snap.ylo if yhi is None or snap.yhi > yhi: yhi = snap.yhi if zlo is None or snap.zlo < zlo: zlo = snap.zlo if zhi is None or snap.zhi > zhi: zhi = snap.zhi return [xlo,ylo,zlo,xhi,yhi,zhi] # -------------------------------------------------------------------- # return maximum atom type across all selected snapshots and atoms def maxtype(self): icol = self.names["type"] max = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] > max: max = atoms[i][icol] return int(max) # -------------------------------------------------------------------- # grab bonds/tris/lines from another object def extra(self,arg): # read bonds from bond dump file if type(arg) is types.StringType: try: f = open(arg,'r') item = f.readline() time = int(f.readline()) item = f.readline() nbonds = int(f.readline()) item = f.readline() if not re.search("BONDS",item): raise Exception("could not read bonds from dump file") words = f.readline().split() ncol = len(words) for i in range(1,nbonds): words += f.readline().split() f.close() # convert values to int and absolute value since can be negative types bondlist = np.zeros((nbonds,4),np.int) ints = [abs(int(value)) for value in words] start = 0 stop = 4 for i in range(nbonds): bondlist[i] = ints[start:stop] start += ncol stop += ncol if bondlist: self.bondflag = 1 self.bondlist = bondlist except: raise Exception("could not read from bond dump file") # request bonds from data object elif type(arg) is types.InstanceType and ".data" in str(arg.__class__): try: bondlist = [] bondlines = arg.sections["Bonds"] for line in bondlines: words = line.split() bondlist.append([int(words[0]),int(words[1]), int(words[2]),int(words[3])]) if bondlist: self.bondflag = 1 self.bondlist = bondlist except: raise Exception("could not extract bonds from data object") # request tris/lines from cdata object elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__): try: tmp,tmp,tmp,tmp,tris,lines = arg.viz(0) if tris: self.triflag = 1 self.trilist = tris if lines: self.lineflag = 1 self.linelist = lines except: raise Exception("could not extract tris/lines from cdata object") # request tris from mdump object elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__): try: self.triflag = 2 self.triobj = arg except: raise Exception("could not extract tris from mdump object") else: raise Exception("unrecognized argument to dump.extra()") # -------------------------------------------------------------------- def compare_atom(self,a,b): if a[0] < b[0]: return -1 elif a[0] > b[0]: return 1 else: return 0 # -------------------------------------------------------------------- # one snapshot class Snap: pass # -------------------------------------------------------------------- # time selection class class tselect: def __init__(self,data): self.data = data # -------------------------------------------------------------------- def all(self): data = self.data for snap in data.snaps: snap.tselect = 1 data.nselect = len(data.snaps) data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps)) # -------------------------------------------------------------------- def one(self,*steps): data = self.data data.nselect = 0 for snap in data.snaps: snap.tselect = 0 for n in steps: i = data.findtime(n) data.snaps[i].tselect = 1 data.nselect += 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps)) # -------------------------------------------------------------------- def none(self): self.one() # -------------------------------------------------------------------- def skip(self,n): data = self.data count = n-1 for snap in data.snaps: if not snap.tselect: continue count += 1 if count == n: count = 0 continue snap.tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps)) # -------------------------------------------------------------------- def test(self,teststr): data = self.data snaps = data.snaps cmd = teststr.replace("$t","snaps[i].time") ccmd = compile(cmd,'','eval') for i in range(data.nsnaps): if not snaps[i].tselect: continue flag = eval(ccmd) if not flag: snaps[i].tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps)) # -------------------------------------------------------------------- # atom selection class class aselect: def __init__(self,data): self.data = data # -------------------------------------------------------------------- def all(self,*args): data = self.data if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): snap.aselect[i] = 1 snap.nselect = snap.natoms else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): snap.aselect[i] = 1 snap.nselect = snap.natoms # -------------------------------------------------------------------- def test(self,teststr,*args): data = self.data # replace all $var with snap.atoms references and compile test string pattern = "\$\w*" matches = re.findall(pattern,teststr) for item in matches: name = item[1:] column = data.names[name] insert = "snap.atoms[i][%d]" % column teststr = teststr.replace(item,insert) ccmd = compile(teststr,'','eval') if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): if not snap.aselect[i]: continue flag = eval(ccmd) if not flag: snap.aselect[i] = 0 snap.nselect -= 1 for i in range(data.nsnaps): if data.snaps[i].tselect: print("%d atoms of %d selected in first step %d" % \ (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)) break for i in range(data.nsnaps-1,-1,-1): if data.snaps[i].tselect: print("%d atoms of %d selected in last step %d" % \ (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)) break else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): if not snap.aselect[i]: continue exec(ccmd) if not flag: snap.aselect[i] = 0 snap.nselect -= 1