/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Oliver Henrich (University of Strathclyde, Glasgow) ------------------------------------------------------------------------- */ #include #include #include #include "fix_nve_dot.h" #include "math_extra.h" #include "atom.h" #include "atom_vec_ellipsoid.h" #include "force.h" #include "update.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace FixConst; using namespace MathExtra; #define INERTIA 0.2 // moment of inertia prefactor for ellipsoid /* ---------------------------------------------------------------------- */ FixNVEDot::FixNVEDot(LAMMPS *lmp, int narg, char **arg) : FixNVE(lmp, narg, arg) {} /* ---------------------------------------------------------------------- */ void FixNVEDot::init() { avec = (AtomVecEllipsoid *) atom->style_match("ellipsoid"); if (!avec) error->all(FLERR,"Compute nve/dot requires atom style ellipsoid"); // check that all particles are finite-size ellipsoids // no point particles allowed, spherical is OK int *ellipsoid = atom->ellipsoid; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (ellipsoid[i] < 0) error->one(FLERR,"Fix nve/dot requires extended particles"); FixNVE::init(); } /* ---------------------------------------------------------------------- */ void FixNVEDot::initial_integrate(int vflag) { double *shape,*quat; double fquat[4],conjqm[4],inertia[3]; AtomVecEllipsoid::Bonus *bonus = avec->bonus; int *ellipsoid = atom->ellipsoid; double **x = atom->x; double **v = atom->v; double **f = atom->f; double **angmom = atom->angmom; double **torque = atom->torque; double *rmass = atom->rmass; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // set timestep here since dt may have changed or come via rRESPA dt = update->dt; dthlf = 0.5 * dt; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dthlfm = dthlf / rmass[i]; quat = bonus[ellipsoid[i]].quat; shape = bonus[ellipsoid[i]].shape; // update momentum by 1/2 step v[i][0] += dthlfm * f[i][0]; v[i][1] += dthlfm * f[i][1]; v[i][2] += dthlfm * f[i][2]; // update position by full step x[i][0] += dt * v[i][0]; x[i][1] += dt * v[i][1]; x[i][2] += dt * v[i][2]; // convert angular momentum and torque in space frame into // quaternion 4-momentum and 1/2 of 4-torque in body frame vec3_to_vec4(quat,angmom[i],conjqm); conjqm[0] *= 2.0; conjqm[1] *= 2.0; conjqm[2] *= 2.0; conjqm[3] *= 2.0; vec3_to_vec4(quat,torque[i],fquat); // update quaternion 4-momentum by 1/2 step conjqm[0] += dt * fquat[0]; conjqm[1] += dt * fquat[1]; conjqm[2] += dt * fquat[2]; conjqm[3] += dt * fquat[3]; // principal moments of inertia inertia[0] = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]); inertia[1] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]); inertia[2] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]); // rotate quaternion and quaternion 4-momentum by full step no_squish_rotate(3,conjqm,quat,inertia,dthlf); no_squish_rotate(2,conjqm,quat,inertia,dthlf); no_squish_rotate(1,conjqm,quat,inertia,dt); no_squish_rotate(2,conjqm,quat,inertia,dthlf); no_squish_rotate(3,conjqm,quat,inertia,dthlf); qnormalize(quat); // convert quaternion 4-momentum in body frame back to angular momentum in space frame vec4_to_vec3(quat,conjqm,angmom[i]); angmom[i][0] *= 0.5; angmom[i][1] *= 0.5; angmom[i][2] *= 0.5; } } /* ---------------------------------------------------------------------- */ void FixNVEDot::final_integrate() { double *quat; double fquat[4],conjqm[4]; double conjqm_dot_quat; AtomVecEllipsoid::Bonus *bonus = avec->bonus; int *ellipsoid = atom->ellipsoid; double **v = atom->v; double **f = atom->f; double **angmom = atom->angmom; double **torque = atom->torque; double *rmass = atom->rmass; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // set timestep here since dt may have changed or come via rRESPA dt = update->dt; dthlf = 0.5 * dt; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dthlfm = dthlf / rmass[i]; quat = bonus[ellipsoid[i]].quat; // update momentum v[i][0] += dthlfm * f[i][0]; v[i][1] += dthlfm * f[i][1]; v[i][2] += dthlfm * f[i][2]; // convert angular momentum and torque in space frame into // quaternion 4-momentum and 1/2 of 4-torque in body frame vec3_to_vec4(quat,angmom[i],conjqm); conjqm[0] *= 2.0; conjqm[1] *= 2.0; conjqm[2] *= 2.0; conjqm[3] *= 2.0; vec3_to_vec4(quat,torque[i],fquat); // update quaternion 4-momentum by 1/2 step conjqm[0] += dt * fquat[0]; conjqm[1] += dt * fquat[1]; conjqm[2] += dt * fquat[2]; conjqm[3] += dt * fquat[3]; // subtract component parallel to quaternion for improved numerical accuracy conjqm_dot_quat = conjqm[0]*quat[0] + conjqm[1]*quat[1] + conjqm[2]*quat[2] + conjqm[3]*quat[3]; conjqm[0] -= conjqm_dot_quat * quat[0]; conjqm[1] -= conjqm_dot_quat * quat[1]; conjqm[2] -= conjqm_dot_quat * quat[2]; conjqm[3] -= conjqm_dot_quat * quat[3]; // convert quaternion 4-momentum in body frame back to angular momentum in space frame vec4_to_vec3(quat,conjqm,angmom[i]); angmom[i][0] *= 0.5; angmom[i][1] *= 0.5; angmom[i][2] *= 0.5; } }