// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "pair_lubricate_poly_omp.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "fix_wall.h" #include "force.h" #include "input.h" #include "math_const.h" #include "neigh_list.h" #include "suffix.h" #include "variable.h" #include #include "omp_compat.h" using namespace LAMMPS_NS; using namespace MathConst; // same as fix_wall.cpp enum{EDGE,CONSTANT,VARIABLE}; /* ---------------------------------------------------------------------- */ PairLubricatePolyOMP::PairLubricatePolyOMP(LAMMPS *lmp) : PairLubricatePoly(lmp), ThrOMP(lmp, THR_PAIR) { suffix_flag |= Suffix::OMP; respa_enable = 0; } /* ---------------------------------------------------------------------- */ PairLubricatePolyOMP::~PairLubricatePolyOMP() {} /* ---------------------------------------------------------------------- */ void PairLubricatePolyOMP::compute(int eflag, int vflag) { ev_init(eflag,vflag); const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = list->inum; // This section of code adjusts R0/RT0/RS0 if necessary due to changes // in the volume fraction as a result of fix deform or moving walls double dims[3], wallcoord; if (flagVF) // Flag for volume fraction corrections if (flagdeform || flagwall == 2) { // Possible changes in volume fraction if (flagdeform && !flagwall) for (int j = 0; j < 3; j++) dims[j] = domain->prd[j]; else if (flagwall == 2 || (flagdeform && flagwall == 1)) { double wallhi[3], walllo[3]; for (int j = 0; j < 3; j++) { wallhi[j] = domain->prd[j]; walllo[j] = 0; } for (int m = 0; m < wallfix->nwall; m++) { int dim = wallfix->wallwhich[m] / 2; int side = wallfix->wallwhich[m] % 2; if (wallfix->xstyle[m] == VARIABLE) { wallcoord = input->variable->compute_equal(wallfix->xindex[m]); } else wallcoord = wallfix->coord0[m]; if (side == 0) walllo[dim] = wallcoord; else wallhi[dim] = wallcoord; } for (int j = 0; j < 3; j++) dims[j] = wallhi[j] - walllo[j]; } double vol_T = dims[0]*dims[1]*dims[2]; double vol_f = vol_P/vol_T; if (flaglog == 0) { R0 = 6*MY_PI*mu*(1.0 + 2.16*vol_f); RT0 = 8*MY_PI*mu; RS0 = 20.0/3.0*MY_PI*mu*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f); } else { R0 = 6*MY_PI*mu*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f); RT0 = 8*MY_PI*mu*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f); RS0 = 20.0/3.0*MY_PI*mu*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f); } } // end of R0 adjustment code #if defined(_OPENMP) #pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, nullptr, thr); if (flaglog) { if (shearing) { if (evflag) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (evflag) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (shearing) { if (evflag) eval<0,1,1>(ifrom, ito, thr); else eval<0,1,0>(ifrom, ito, thr); } else { if (evflag) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } thr->timer(Timer::PAIR); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void PairLubricatePolyOMP::eval(int iifrom, int iito, ThrData * const thr) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz; double rsq,r,h_sep,beta0,beta1,radi,radj; double vr1,vr2,vr3,vnnr,vn1,vn2,vn3; double vt1,vt2,vt3,wt1,wt2,wt3,wdotn; double vRS0; double vi[3],vj[3],wi[3],wj[3],xl[3],jl[3]; double a_sq,a_sh,a_pu; int *ilist,*jlist,*numneigh,**firstneigh; double lamda[3],vstream[3]; double vxmu2f = force->vxmu2f; double * const * const x = atom->x; double * const * const v = atom->v; double * const * const f = thr->get_f(); double * const * const omega = atom->omega; double * const * const torque = thr->get_torque(); const double * const radius = atom->radius; const int * const type = atom->type; const int nlocal = atom->nlocal; int overlaps = 0; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // subtract streaming component of velocity, omega, angmom // assume fluid streaming velocity = box deformation rate // vstream = (ux,uy,uz) // ux = h_rate[0]*x + h_rate[5]*y + h_rate[4]*z // uy = h_rate[1]*y + h_rate[3]*z // uz = h_rate[2]*z // omega_new = omega - curl(vstream)/2 // angmom_new = angmom - I*curl(vstream)/2 // Ef = (grad(vstream) + (grad(vstream))^T) / 2 if (shearing) { double *h_rate = domain->h_rate; double *h_ratelo = domain->h_ratelo; for (ii = iifrom; ii < iito; ii++) { i = ilist[ii]; itype = type[i]; radi = radius[i]; domain->x2lamda(x[i],lamda); vstream[0] = h_rate[0]*lamda[0] + h_rate[5]*lamda[1] + h_rate[4]*lamda[2] + h_ratelo[0]; vstream[1] = h_rate[1]*lamda[1] + h_rate[3]*lamda[2] + h_ratelo[1]; vstream[2] = h_rate[2]*lamda[2] + h_ratelo[2]; v[i][0] -= vstream[0]; v[i][1] -= vstream[1]; v[i][2] -= vstream[2]; omega[i][0] += 0.5*h_rate[3]; omega[i][1] -= 0.5*h_rate[4]; omega[i][2] += 0.5*h_rate[5]; } // set Ef from h_rate in strain units Ef[0][0] = h_rate[0]/domain->xprd; Ef[1][1] = h_rate[1]/domain->yprd; Ef[2][2] = h_rate[2]/domain->zprd; Ef[0][1] = Ef[1][0] = 0.5 * h_rate[5]/domain->yprd; Ef[0][2] = Ef[2][0] = 0.5 * h_rate[4]/domain->zprd; Ef[1][2] = Ef[2][1] = 0.5 * h_rate[3]/domain->zprd; // copy updated omega to the ghost particles // no need to do this if not shearing since comm->ghost_velocity is set sync_threads(); // MPI communication only on master thread #if defined(_OPENMP) #pragma omp master #endif { comm->forward_comm_pair(this); } sync_threads(); } // R0 adjustment has already been done in this->compute() for (ii = iifrom; ii < iito; ++ii) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; radi = radius[i]; jlist = firstneigh[i]; jnum = numneigh[i]; // angular velocity wi[0] = omega[i][0]; wi[1] = omega[i][1]; wi[2] = omega[i][2]; // FLD contribution to force and torque due to isotropic terms // FLD contribution to stress from isotropic RS0 if (flagfld) { f[i][0] -= vxmu2f*R0*radi*v[i][0]; f[i][1] -= vxmu2f*R0*radi*v[i][1]; f[i][2] -= vxmu2f*R0*radi*v[i][2]; const double rad3 = radi*radi*radi; torque[i][0] -= vxmu2f*RT0*rad3*wi[0]; torque[i][1] -= vxmu2f*RT0*rad3*wi[1]; torque[i][2] -= vxmu2f*RT0*rad3*wi[2]; if (SHEARING && vflag_either) { vRS0 = -vxmu2f * RS0*rad3; v_tally_tensor(i,i,nlocal,/* newton_pair */ 0, vRS0*Ef[0][0],vRS0*Ef[1][1],vRS0*Ef[2][2], vRS0*Ef[0][1],vRS0*Ef[0][2],vRS0*Ef[1][2]); } } if (!flagHI) continue; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; radj = atom->radius[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); // angular momentum = I*omega = 2/5 * M*R^2 * omega wj[0] = omega[j][0]; wj[1] = omega[j][1]; wj[2] = omega[j][2]; // xl = point of closest approach on particle i from its center xl[0] = -delx/r*radi; xl[1] = -dely/r*radi; xl[2] = -delz/r*radi; jl[0] = -delx/r*radj; jl[1] = -dely/r*radj; jl[2] = -delz/r*radj; // velocity at the point of closest approach on both particles // v = v + omega_cross_xl - Ef.xl // particle i vi[0] = v[i][0] + (wi[1]*xl[2] - wi[2]*xl[1]) - (Ef[0][0]*xl[0] + Ef[0][1]*xl[1] + Ef[0][2]*xl[2]); vi[1] = v[i][1] + (wi[2]*xl[0] - wi[0]*xl[2]) - (Ef[1][0]*xl[0] + Ef[1][1]*xl[1] + Ef[1][2]*xl[2]); vi[2] = v[i][2] + (wi[0]*xl[1] - wi[1]*xl[0]) - (Ef[2][0]*xl[0] + Ef[2][1]*xl[1] + Ef[2][2]*xl[2]); // particle j vj[0] = v[j][0] - (wj[1]*jl[2] - wj[2]*jl[1]) + (Ef[0][0]*jl[0] + Ef[0][1]*jl[1] + Ef[0][2]*jl[2]); vj[1] = v[j][1] - (wj[2]*jl[0] - wj[0]*jl[2]) + (Ef[1][0]*jl[0] + Ef[1][1]*jl[1] + Ef[1][2]*jl[2]); vj[2] = v[j][2] - (wj[0]*jl[1] - wj[1]*jl[0]) + (Ef[2][0]*jl[0] + Ef[2][1]*jl[1] + Ef[2][2]*jl[2]); // scalar resistances XA and YA h_sep = r - radi-radj; // check for overlaps if (h_sep < 0.0) overlaps++; // if less than the minimum gap use the minimum gap instead if (r < cut_inner[itype][jtype]) h_sep = cut_inner[itype][jtype] - radi-radj; // scale h_sep by radi h_sep = h_sep/radi; beta0 = radj/radi; beta1 = 1.0 + beta0; // scalar resistances if (FLAGLOG) { a_sq = beta0*beta0/beta1/beta1/h_sep + (1.0+7.0*beta0+beta0*beta0)/5.0/pow(beta1,3.0)*log(1.0/h_sep); a_sq += (1.0+18.0*beta0-29.0*beta0*beta0+18.0 * pow(beta0,3.0)+pow(beta0,4.0))/21.0/pow(beta1,4.0) * h_sep*log(1.0/h_sep); a_sq *= 6.0*MY_PI*mu*radi; a_sh = 4.0*beta0*(2.0+beta0+2.0*beta0*beta0)/15.0/pow(beta1,3.0) * log(1.0/h_sep); a_sh += 4.0*(16.0-45.0*beta0+58.0*beta0*beta0-45.0*pow(beta0,3.0) + 16.0*pow(beta0,4.0))/375.0/pow(beta1,4.0) * h_sep*log(1.0/h_sep); a_sh *= 6.0*MY_PI*mu*radi; // old invalid eq for pumping term // changed 29Jul16 from eq 9.25 -> 9.27 in Kim and Karilla // a_pu = beta0*(4.0+beta0)/10.0/beta1/beta1*log(1.0/h_sep); // a_pu += (32.0-33.0*beta0+83.0*beta0*beta0+43.0 * // pow(beta0,3.0))/250.0/pow(beta1,3.0)*h_sep*log(1.0/h_sep); // a_pu *= 8.0*MY_PI*mu*pow(radi,3.0); a_pu = 2.0*beta0/5.0/beta1*log(1.0/h_sep); a_pu += 2.0*(8.0+6.0*beta0+33.0*beta0*beta0)/125.0/beta1/beta1* h_sep*log(1.0/h_sep); a_pu *= 8.0*MY_PI*mu*pow(radi,3.0); } else a_sq = 6.0*MY_PI*mu*radi*(beta0*beta0/beta1/beta1/h_sep); // relative velocity at the point of closest approach // includes fluid velocity vr1 = vi[0] - vj[0]; vr2 = vi[1] - vj[1]; vr3 = vi[2] - vj[2]; // normal component (vr.n)n vnnr = (vr1*delx + vr2*dely + vr3*delz)/r; vn1 = vnnr*delx/r; vn2 = vnnr*dely/r; vn3 = vnnr*delz/r; // tangential component vr - (vr.n)n vt1 = vr1 - vn1; vt2 = vr2 - vn2; vt3 = vr3 - vn3; // force due to squeeze type motion fx = a_sq*vn1; fy = a_sq*vn2; fz = a_sq*vn3; // force due to all shear kind of motions if (FLAGLOG) { fx = fx + a_sh*vt1; fy = fy + a_sh*vt2; fz = fz + a_sh*vt3; } // scale forces for appropriate units fx *= vxmu2f; fy *= vxmu2f; fz *= vxmu2f; // add to total force f[i][0] -= fx; f[i][1] -= fy; f[i][2] -= fz; // torque due to this force if (FLAGLOG) { tx = xl[1]*fz - xl[2]*fy; ty = xl[2]*fx - xl[0]*fz; tz = xl[0]*fy - xl[1]*fx; torque[i][0] -= vxmu2f*tx; torque[i][1] -= vxmu2f*ty; torque[i][2] -= vxmu2f*tz; // torque due to a_pu wdotn = ((wi[0]-wj[0])*delx + (wi[1]-wj[1])*dely + (wi[2]-wj[2])*delz)/r; wt1 = (wi[0]-wj[0]) - wdotn*delx/r; wt2 = (wi[1]-wj[1]) - wdotn*dely/r; wt3 = (wi[2]-wj[2]) - wdotn*delz/r; tx = a_pu*wt1; ty = a_pu*wt2; tz = a_pu*wt3; torque[i][0] -= vxmu2f*tx; torque[i][1] -= vxmu2f*ty; torque[i][2] -= vxmu2f*tz; } if (EVFLAG) ev_tally_xyz(i,nlocal,nlocal, /* newton_pair */ 0, 0.0,0.0,-fx,-fy,-fz,delx,dely,delz); } } } // restore streaming component of velocity, omega, angmom if (SHEARING) { double *h_rate = domain->h_rate; double *h_ratelo = domain->h_ratelo; for (ii = iifrom; ii < iito; ii++) { i = ilist[ii]; itype = type[i]; radi = radius[i]; domain->x2lamda(x[i],lamda); vstream[0] = h_rate[0]*lamda[0] + h_rate[5]*lamda[1] + h_rate[4]*lamda[2] + h_ratelo[0]; vstream[1] = h_rate[1]*lamda[1] + h_rate[3]*lamda[2] + h_ratelo[1]; vstream[2] = h_rate[2]*lamda[2] + h_ratelo[2]; v[i][0] += vstream[0]; v[i][1] += vstream[1]; v[i][2] += vstream[2]; omega[i][0] -= 0.5*h_rate[3]; omega[i][1] += 0.5*h_rate[4]; omega[i][2] -= 0.5*h_rate[5]; } } } /* ---------------------------------------------------------------------- */ double PairLubricatePolyOMP::memory_usage() { double bytes = memory_usage_thr(); bytes += PairLubricatePoly::memory_usage(); return bytes; }