// ************************************************************************** // edpd.cu // ------------------- // Trung Dac Nguyen (U Chicago) // // Device code for acceleration of the edpd pair style // // __________________________________________________________________________ // This file is part of the LAMMPS Accelerator Library (LAMMPS_AL) // __________________________________________________________________________ // // begin : September 2023 // email : ndactrung@gmail.com // *************************************************************************** #if defined(NV_KERNEL) || defined(USE_HIP) #include "lal_aux_fun1.h" #ifndef _DOUBLE_DOUBLE _texture( pos_tex,float4); _texture( vel_tex,float4); #else _texture_2d( pos_tex,int4); _texture_2d( vel_tex,int4); #endif #else #define pos_tex x_ #define vel_tex v_ #endif #define EPSILON (numtyp)1.0e-10 //#define _USE_UNIFORM_SARU_LCG //#define _USE_UNIFORM_SARU_TEA8 //#define _USE_GAUSSIAN_SARU_LCG #if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG) #define _USE_UNIFORM_SARU_LCG #endif // References: // 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128. // 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201. // PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19 #define LCGA 0x4beb5d59 /* Full period 32 bit LCG */ #define LCGC 0x2600e1f7 #define oWeylPeriod 0xda879add /* Prime period 3666320093 */ #define oWeylOffset 0x8009d14b #define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */ // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] // using the inherent LCG, then multiply u with sqrt(3) to "match" // with a normal random distribution. // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) // Curly brackets to make variables local to the scope. #ifdef _USE_UNIFORM_SARU_LCG #define SQRT3 (numtyp)1.7320508075688772935274463 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8 // then multiply u with sqrt(3) to "match" with a normal random distribution // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) #ifdef _USE_UNIFORM_SARU_TEA8 #define SQRT3 (numtyp)1.7320508075688772935274463 #define k0 0xA341316C #define k1 0xC8013EA4 #define k2 0xAD90777D #define k3 0x7E95761E #define delta 0x9e3779b9 #define rounds 8 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int sum = 0; \ for (int i=0; i < rounds; i++) { \ sum += delta; \ state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \ wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \ } \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0], // and uses the polar method (Marsaglia's) to transform to a normal random value // This is used to compared with CPU DPD using RandMars::gaussian() #ifdef _USE_GAUSSIAN_SARU_LCG #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state=0x12345678; \ unsigned int wstate=12345678; \ state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int v, s; \ numtyp r1, r2, rsq; \ while (1) { \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ rsq = r1 * r1 + r2 * r2; \ if (rsq < (numtyp)1.0) break; \ } \ numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq); \ randnum = r2*fac; \ } #endif #if (SHUFFLE_AVAIL == 0) #define store_heatflux(Qi, ii, inum, tid, t_per_atom, offset, Q) \ if (t_per_atom>1) { \ simdsync(); \ simd_reduce_add1(t_per_atom, red_acc, offset, tid, Qi); \ } \ if (offset==0 && ii1) { \ simd_reduce_add1(t_per_atom,Qi); \ } \ if (offset==0 && ii tag2) { tag1 = jtag; tag2 = itag; } numtyp randnum = (numtyp)0.0; saru(tag1, tag2, seed, timestep, randnum); numtyp T_ij=(numtyp)0.5*(Ti+Tj); numtyp4 T_pow; T_pow.x = T_ij - (numtyp)1.0; T_pow.y = T_pow.x*T_pow.x; T_pow.z = T_pow.x*T_pow.y; T_pow.w = T_pow.x*T_pow.z; numtyp coeff2x = coeff2[mtype].x; //power[itype][jtype] numtyp coeff2y = coeff2[mtype].y; //kappa[itype][jtype] numtyp coeff2z = coeff2[mtype].z; //powerT[itype][jtype] numtyp coeff2w = coeff2[mtype].w; //cutT[itype][jtype] numtyp power_d = coeff2x; if (power_flag) { numtyp factor = (numtyp)1.0; factor += sc[mtype].x*T_pow.x + sc[mtype].y*T_pow.y + sc[mtype].z*T_pow.z + sc[mtype].w*T_pow.w; power_d *= factor; } power_d = MAX((numtyp)0.01,power_d); numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype] wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc)); numtyp wr = ucl_pow(wc, (numtyp)0.5*power_d); numtyp kboltz = (numtyp)1.0; numtyp GammaIJ = coeffy; // gamma[itype][jtype] numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj); SigmaIJ = ucl_sqrt(SigmaIJ); numtyp force = coeffx*T_ij*wc; // a0[itype][jtype] force -= GammaIJ *wr*wr *dot*rinv; force += SigmaIJ * wr *randnum * dtinvsqrt; force *= factor_dpd*rinv; f.x+=delx*force; f.y+=dely*force; f.z+=delz*force; // heat transfer if (r < coeff2w) { numtyp wrT = (numtyp)1.0 - r/coeff2w; wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT)); wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype] numtyp randnumT = (numtyp)0; saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian(); randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0)); numtyp kappaT = coeff2y; // kappa[itype][jtype] if (kappa_flag) { numtyp factor = (numtyp)1.0; factor += kc[mtype].x*T_pow.x + kc[mtype].y*T_pow.y + kc[mtype].z*T_pow.z + kc[mtype].w*T_pow.w; kappaT *= factor; } numtyp kij = cvi*cvj*kappaT * T_ij*T_ij; numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij); numtyp dQc = kij * wrT*wrT * (Tj - Ti)/(Ti*Tj); numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum; dQd /= (cvi+cvj); numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT; Qi += (dQc + dQd + dQr ); } if (EVFLAG && eflag) { numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc; energy+=factor_dpd*e; } if (EVFLAG && vflag) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor } // if ii store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q); } __kernel void k_edpd_fast(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict extra, const __global numtyp4 *restrict coeff_in, const __global numtyp4 *restrict coeff2_in, const __global numtyp *restrict mass, const __global numtyp4 *restrict sc_in, const __global numtyp4 *restrict kc_in, const __global numtyp *restrict sp_lj_in, const __global numtyp *restrict sp_sqrt_in, const __global int * dev_nbor, const __global int * dev_packed, __global acctyp3 *restrict ans, __global acctyp *restrict engv, __global acctyp *restrict Q, const int eflag, const int vflag, const int power_flag, const int kappa_flag, const int inum, const int nbor_pitch, const __global numtyp4 *restrict v_, const __global numtyp *restrict cutsq, const numtyp dtinvsqrt, const int seed, const int timestep, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); #ifndef ONETYPE __local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp4 coeff2[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp4 sc[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp4 kc[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp sp_lj[4]; if (tid<4) { sp_lj[tid]=sp_lj_in[tid]; } if (tid tag2) { tag1 = jtag; tag2 = itag; } numtyp randnum = (numtyp)0.0; saru(tag1, tag2, seed, timestep, randnum); numtyp T_ij=(numtyp)0.5*(Ti+Tj); numtyp4 T_pow; T_pow.x = T_ij - (numtyp)1.0; T_pow.y = T_pow.x*T_pow.x; T_pow.z = T_pow.x*T_pow.y; T_pow.w = T_pow.x*T_pow.z; numtyp power_d = coeff2x; // power[itype][jtype] if (power_flag) { numtyp factor = (numtyp)1.0; factor += scx*T_pow.x + scy*T_pow.y + scz*T_pow.z + scw*T_pow.w; power_d *= factor; } power_d = MAX((numtyp)0.01,power_d); numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype] wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc)); numtyp wr = ucl_pow((numtyp)wc, (numtyp)0.5*power_d); numtyp kboltz = (numtyp)1.0; numtyp GammaIJ = coeffy; // gamma[itype][jtype] numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj); SigmaIJ = ucl_sqrt(SigmaIJ); numtyp force = coeffx*T_ij*wc; // a0[itype][jtype] force -= GammaIJ *wr*wr *dot*rinv; force += SigmaIJ* wr *randnum * dtinvsqrt; #ifndef ONETYPE force *= factor_dpd*rinv; #else force *= rinv; #endif f.x+=delx*force; f.y+=dely*force; f.z+=delz*force; // heat transfer if (r < coeff2w) { numtyp wrT = (numtyp)1.0 - r/coeff2w; wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT)); wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype] numtyp randnumT = (numtyp)0; saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian(); randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0)); numtyp kappaT = coeff2y; // kappa[itype][jtype] if (kappa_flag) { numtyp factor = (numtyp)1.0; factor += kcx*T_pow.x + kcy*T_pow.y + kcz*T_pow.z + kcw*T_pow.w; kappaT *= factor; } numtyp kij = cvi*cvj*kappaT * T_ij*T_ij; numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij); numtyp dQc = kij * wrT*wrT * (Tj - Ti )/(Ti*Tj); numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum; dQd /= (cvi+cvj); numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT; Qi += (dQc + dQd + dQr ); } if (EVFLAG && eflag) { numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc; #ifndef ONETYPE energy+=factor_dpd*e; #else energy+=e; #endif } if (EVFLAG && vflag) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor } // if ii store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q); }