/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define MY_PREFIX compute_temp_cuda #include "cuda_shared.h" #include "cuda_common.h" #include "crm_cuda_utils.cu" #include "compute_temp_cuda_cu.h" #include "compute_temp_cuda_kernel.cu" void Cuda_ComputeTempCuda_UpdateBuffer(cuda_shared_data* sdata) { int size = (unsigned)((sdata->atom.nlocal + 63) / 64.0) * 6 * sizeof(ENERGY_CFLOAT); if(sdata->buffersize < size) { MYDBG(printf("Cuda_ComputeTempCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);) CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize); sdata->buffer = CudaWrapper_AllocCudaData(size); sdata->buffersize = size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);) } cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*)); } void Cuda_ComputeTempCuda_UpdateNmax(cuda_shared_data* sdata) { cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(mass) , & sdata->atom.mass .dev_data, sizeof(V_CFLOAT*)); if(sdata->atom.rmass_flag) cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass.dev_data, sizeof(V_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(rmass_flag) , & sdata->atom.rmass_flag, sizeof(int)); cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int)); cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*)); } void Cuda_ComputeTempCuda_Init(cuda_shared_data* sdata) { Cuda_ComputeTempCuda_UpdateNmax(sdata); } void Cuda_ComputeTempCuda_Vector(cuda_shared_data* sdata, int groupbit, ENERGY_CFLOAT* t) { //if(sdata->atom.update_nmax) //is most likely not called every timestep, therefore update of constants is necessary Cuda_ComputeTempCuda_UpdateNmax(sdata); //if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); //if(sdata->buffer_new) Cuda_ComputeTempCuda_UpdateBuffer(sdata); int3 layout = getgrid(sdata->atom.nlocal); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { Cuda_ComputeTempCuda_Vector_Kernel <<< grid, threads, threads.x* 6* sizeof(ENERGY_CFLOAT)>>> (groupbit); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Vector: compute_vector Kernel execution failed"); int oldgrid = grid.x * grid.y; grid.x = 6; grid.y = 1; threads.x = 512; Cuda_ComputeTempCuda_Reduce_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_CFLOAT)>>> (oldgrid, t); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Vector: reduce_vector Kernel execution failed"); } } void Cuda_ComputeTempCuda_Scalar(cuda_shared_data* sdata, int groupbit, ENERGY_CFLOAT* t) { //if(sdata->atom.update_nmax) //is most likely not called every timestep, therefore update of constants is necessary Cuda_ComputeTempCuda_UpdateNmax(sdata); //if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); //if(sdata->buffer_new) Cuda_ComputeTempCuda_UpdateBuffer(sdata); MYDBG(printf("#CUDA ComputeTempCuda_Scalar: %i\n", sdata->atom.nlocal);) int3 layout = getgrid(sdata->atom.nlocal); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: pre compute_scalar Kernel"); Cuda_ComputeTempCuda_Scalar_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_CFLOAT)>>> (groupbit); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: compute_scalar Kernel execution failed"); int oldgrid = grid.x * grid.y; grid.x = 1; grid.y = 1; threads.x = 512; Cuda_ComputeTempCuda_Reduce_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_CFLOAT)>>> (oldgrid, t); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: reduce_scalar Kernel execution failed"); } }