/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ static inline __device__ void check_distance(X_CFLOAT &xtmp, X_CFLOAT &ytmp, X_CFLOAT &ztmp, int &i, int groupbit) { if(_dist_check) { X_CFLOAT d = X_F(0.0); if(i < _nlocal) { X_CFLOAT tmp = xtmp - _xhold[i]; d = tmp * tmp; tmp = ytmp - _xhold[i + _maxhold]; d += tmp * tmp; tmp = ztmp - _xhold[i + 2 * _maxhold]; d += tmp * tmp; d = ((_mask[i] & groupbit)) ? d : X_F(0.0); } if(not __all(d <= _triggerneighsq)) _reneigh_flag[0] = 1; } } __global__ void FixNHCuda_nh_v_press_Kernel(int groupbit, F_CFLOAT3 factor, int p_triclinic, F_CFLOAT3 factor2) { int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_CFLOAT* my_v = _v + i; V_CFLOAT vx = my_v[0]; V_CFLOAT vy = my_v[_nmax]; V_CFLOAT vz = my_v[2 * _nmax]; vx *= factor.x; vy *= factor.y; vz *= factor.z; if(p_triclinic) { vx += vy * factor2.z + vz * factor2.y; vy += vz * factor2.x; } vx *= factor.x; vy *= factor.y; vz *= factor.z; my_v[0] = vx; my_v[_nmax] = vy; my_v[2 * _nmax] = vz; } } __global__ void FixNHCuda_nh_v_temp_Kernel(int groupbit, F_CFLOAT factor_eta) { int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_CFLOAT* my_v = _v + i; my_v[0] *= factor_eta; my_v[_nmax] *= factor_eta; my_v[2 * _nmax] *= factor_eta; } } __global__ void FixNHCuda_nh_v_press_and_nve_v_NoBias_Kernel(int groupbit, F_CFLOAT3 factor, int p_triclinic, F_CFLOAT3 factor2) { int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_CFLOAT* my_f = _f + i; V_CFLOAT* my_v = _v + i; V_CFLOAT dtfm = _dtf; if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i]; else dtfm *= V_F(1.0) / _mass[_type[i]]; V_CFLOAT vx = my_v[0]; V_CFLOAT vy = my_v[_nmax]; V_CFLOAT vz = my_v[2 * _nmax]; vx *= factor.x; vy *= factor.y; vz *= factor.z; if(p_triclinic) { vx += vy * factor2.z + vz * factor2.y; vy += vz * factor2.x; } vx *= factor.x; vy *= factor.y; vz *= factor.z; my_v[0] = vx + dtfm * my_f[0]; my_v[_nmax] = vy + dtfm * my_f[_nmax]; my_v[2 * _nmax] = vz + dtfm * my_f[_nmax * 2]; } } __global__ void FixNHCuda_nve_v_Kernel(int groupbit) { int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_CFLOAT* my_f = _f + i; V_CFLOAT* my_v = _v + i; V_CFLOAT dtfm = _dtf; if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i]; else dtfm *= V_F(1.0) / _mass[_type[i]]; *my_v = (*my_v + dtfm * (*my_f)); my_f += _nmax; my_v += _nmax; *my_v = (*my_v + dtfm * (*my_f)); my_f += _nmax; my_v += _nmax; *my_v = (*my_v + dtfm * (*my_f)); } } __global__ void FixNHCuda_nve_x_Kernel(int groupbit) { X_CFLOAT xtmp, ytmp, ztmp; int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_CFLOAT* my_v = _v + i; X_CFLOAT* my_x = _x + i; xtmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax; ytmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax; ztmp = *my_x += _dtv * *my_v; } check_distance(xtmp, ytmp, ztmp, i, groupbit); } __global__ void FixNHCuda_nve_v_and_nh_v_press_NoBias_Kernel(int groupbit, F_CFLOAT3 factor, int p_triclinic, F_CFLOAT3 factor2) { int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_CFLOAT* my_f = _f + i; V_CFLOAT* my_v = _v + i; V_CFLOAT dtfm = _dtf; if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i]; else dtfm *= V_F(1.0) / _mass[_type[i]]; V_CFLOAT vx = my_v[0] + dtfm * my_f[0]; V_CFLOAT vy = my_v[_nmax] + dtfm * my_f[_nmax]; V_CFLOAT vz = my_v[2 * _nmax] + dtfm * my_f[2 * _nmax]; vx *= factor.x; vy *= factor.y; vz *= factor.z; if(p_triclinic) { vx += vy * factor2.z + vz * factor2.y; vy += vz * factor2.x; } vx *= factor.x; vy *= factor.y; vz *= factor.z; my_v[0] = vx; my_v[_nmax] = vy; my_v[2 * _nmax] = vz; } }