/* //@HEADER // ************************************************************************ // // Kokkos v. 2.0 // Copyright (2014) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact H. Carter Edwards (hcedwar@sandia.gov) // // ************************************************************************ //@HEADER */ #ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP #define KOKKOS_UNITTEST_TASKPOLICY_HPP #include #include #include #include namespace TestTaskPolicy { //---------------------------------------------------------------------------- template< class ExecSpace > struct FibChild { typedef long value_type ; Kokkos::Experimental::TaskPolicy policy ; const value_type n ; int has_nested ; FibChild( const Kokkos::Experimental::TaskPolicy & arg_policy , const value_type arg_n ) : policy(arg_policy,2) /* default dependence capacity = 2 */ , n( arg_n ), has_nested(0) {} inline void apply( value_type & result ) { if ( n < 2 ) { has_nested = -1 ; result = n ; } else { if ( has_nested == 0 ) { // Spawn new children and respawn myself to sum their results: has_nested = 2 ; Kokkos::Experimental::respawn ( policy , this , Kokkos::Experimental::spawn( policy , FibChild(policy,n-1) ) , Kokkos::Experimental::spawn( policy , FibChild(policy,n-2) ) ); } else if ( has_nested == 2 ) { has_nested = -1 ; const Kokkos::Experimental::Future fib_1 = policy.get_dependence(this,0); const Kokkos::Experimental::Future fib_2 = policy.get_dependence(this,1); result = fib_1.get() + fib_2.get(); } else { fprintf(stderr,"FibChild(%ld) execution error\n",(long)n); fflush(stderr); } } } }; template< class ExecSpace > struct FibChild2 { typedef long value_type ; Kokkos::Experimental::TaskPolicy policy ; const value_type n ; int has_nested ; FibChild2( const Kokkos::Experimental::TaskPolicy & arg_policy , const value_type arg_n ) : policy(arg_policy,2) /* default dependence capacity = 2 */ , n( arg_n ), has_nested(0) {} inline void apply( value_type & result ) { if ( 0 == has_nested ) { if ( n < 2 ) { has_nested = -1 ; result = n ; } else if ( n < 4 ) { // Spawn new children and respawn myself to sum their results: // result = Fib(n-1) + Fib(n-2) has_nested = 2 ; // Kokkos::respawn implements the following steps: policy.clear_dependence( this ); policy.add_dependence( this , Kokkos::Experimental::spawn( policy , FibChild2(policy,n-1) ) ); policy.add_dependence( this , Kokkos::Experimental::spawn( policy , FibChild2(policy,n-2) ) ); policy.respawn( this ); } else { // Spawn new children and respawn myself to sum their results: // result = Fib(n-1) + Fib(n-2) // result = ( Fib(n-2) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) ) // result = ( ( Fib(n-3) + Fib(n-4) ) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) ) // result = 3 * Fib(n-3) + 2 * Fib(n-4) has_nested = 4 ; // Kokkos::Experimental::respawn implements the following steps: policy.clear_dependence( this ); policy.add_dependence( this , Kokkos::Experimental::spawn( policy , FibChild2(policy,n-3) ) ); policy.add_dependence( this , Kokkos::Experimental::spawn( policy , FibChild2(policy,n-4) ) ); policy.respawn( this ); } } else if ( 2 == has_nested || 4 == has_nested ) { const Kokkos::Experimental::Future fib_a = policy.get_dependence(this,0); const Kokkos::Experimental::Future fib_b = policy.get_dependence(this,1); result = ( has_nested == 2 ) ? fib_a.get() + fib_b.get() : 3 * fib_a.get() + 2 * fib_b.get() ; has_nested = -1 ; } else { fprintf(stderr,"FibChild2(%ld) execution error\n",(long)n); fflush(stderr); } } }; namespace { long eval_fib( long n ) { if ( n < 2 ) return n ; std::vector fib(n+1); fib[0] = 0 ; fib[1] = 1 ; for ( long i = 2 ; i <= n ; ++i ) { fib[i] = fib[i-2] + fib[i-1]; } return fib[n]; } } template< class ExecSpace > void test_fib( long n ) { Kokkos::Experimental::TaskPolicy policy(2); Kokkos::Experimental::Future f = Kokkos::Experimental::spawn( policy , FibChild(policy,n) ); Kokkos::Experimental::wait( policy ); if ( f.get() != eval_fib(n) ) { std::cout << "Fib(" << n << ") = " << f.get(); std::cout << " != " << eval_fib(n); std::cout << std::endl ; } } template< class ExecSpace > void test_fib2( long n ) { Kokkos::Experimental::TaskPolicy policy(2); // default dependence capacity Kokkos::Experimental::Future f = Kokkos::Experimental::spawn( policy , FibChild2(policy,n) ); Kokkos::Experimental::wait( policy ); if ( f.get() != eval_fib(n) ) { std::cout << "Fib2(" << n << ") = " << f.get(); std::cout << " != " << eval_fib(n); std::cout << std::endl ; } } //---------------------------------------------------------------------------- template< class ExecSpace > struct Norm2 { typedef double value_type ; const double * const m_x ; Norm2( const double * x ) : m_x(x) {} inline void init( double & val ) const { val = 0 ; } inline void operator()( int i , double & val ) const { val += m_x[i] * m_x[i] ; } void apply( double & dst ) const { dst = std::sqrt( dst ); } }; template< class ExecSpace > void test_norm2( const int n ) { Kokkos::Experimental::TaskPolicy< ExecSpace > policy ; double * const x = new double[n]; for ( int i = 0 ; i < n ; ++i ) x[i] = 1 ; Kokkos::RangePolicy r(0,n); Kokkos::Experimental::Future f = Kokkos::Experimental::spawn_reduce( policy , r , Norm2(x) ); Kokkos::Experimental::wait( policy ); #if defined(PRINT) std::cout << "Norm2: " << f.get() << std::endl ; #endif delete[] x ; } //---------------------------------------------------------------------------- template< class Space > struct TaskDep { typedef int value_type ; typedef Kokkos::Experimental::TaskPolicy< Space > policy_type ; const policy_type policy ; const int input ; TaskDep( const policy_type & arg_p , const int arg_i ) : policy( arg_p ), input( arg_i ) {} void apply( int & val ) { val = input ; const int num = policy.get_dependence( this ); for ( int i = 0 ; i < num ; ++i ) { Kokkos::Experimental::Future f = policy.get_dependence( this , i ); val += f.get(); } } }; template< class Space > void test_task_dep( const int n ) { enum { NTEST = 64 }; Kokkos::Experimental::TaskPolicy< Space > policy ; Kokkos::Experimental::Future f[ NTEST ]; for ( int i = 0 ; i < NTEST ; ++i ) { // Create task in the "constructing" state with capacity for 'n+1' dependences f[i] = policy.create( TaskDep(policy,0) , n + 1 ); if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING ) { Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING"); } // Only use 'n' dependences for ( int j = 0 ; j < n ; ++j ) { Kokkos::Experimental::Future nested = policy.create( TaskDep(policy,j+1) ); policy.spawn( nested ); // Add dependence to a "constructing" task policy.add_dependence( f[i] , nested ); } // Spawn task from the "constructing" to the "waiting" state policy.spawn( f[i] ); } const int answer = n % 2 ? n * ( ( n + 1 ) / 2 ) : ( n / 2 ) * ( n + 1 ); Kokkos::Experimental::wait( policy ); int error = 0 ; for ( int i = 0 ; i < NTEST ; ++i ) { if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE ) { Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE"); } if ( answer != f[i].get() && 0 == error ) { std::cout << "test_task_dep(" << n << ") ERROR at[" << i << "]" << " answer(" << answer << ") != result(" << f[i].get() << ")" << std::endl ; } } } //---------------------------------------------------------------------------- #if defined( KOKKOS_HAVE_CXX11 ) template< class ExecSpace > struct TaskTeam { enum { SPAN = 8 }; typedef void value_type ; typedef Kokkos::Experimental::TaskPolicy policy_type ; typedef Kokkos::Experimental::Future future_type ; typedef Kokkos::View view_type ; policy_type policy ; future_type future ; view_type result ; const long nvalue ; TaskTeam( const policy_type & arg_policy , const view_type & arg_result , const long arg_nvalue ) : policy(arg_policy) , future() , result( arg_result ) , nvalue( arg_nvalue ) {} inline void apply( const typename policy_type::member_type & member ) { const long end = nvalue + 1 ; const long begin = 0 < end - SPAN ? end - SPAN : 0 ; if ( 0 < begin && future.get_task_state() == Kokkos::Experimental::TASK_STATE_NULL ) { if ( member.team_rank() == 0 ) { future = policy.spawn( policy.create_team( TaskTeam( policy , result , begin - 1 ) ) ); policy.clear_dependence( this ); policy.add_dependence( this , future ); policy.respawn( this ); } return ; } Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { result[i] = i + 1 ; } ); } }; template< class ExecSpace > struct TaskTeamValue { enum { SPAN = 8 }; typedef long value_type ; typedef Kokkos::Experimental::TaskPolicy policy_type ; typedef Kokkos::Experimental::Future future_type ; typedef Kokkos::View view_type ; policy_type policy ; future_type future ; view_type result ; const long nvalue ; TaskTeamValue( const policy_type & arg_policy , const view_type & arg_result , const long arg_nvalue ) : policy(arg_policy) , future() , result( arg_result ) , nvalue( arg_nvalue ) {} inline void apply( const typename policy_type::member_type & member , value_type & final ) { const long end = nvalue + 1 ; const long begin = 0 < end - SPAN ? end - SPAN : 0 ; if ( 0 < begin && future.get_task_state() == Kokkos::Experimental::TASK_STATE_NULL ) { if ( member.team_rank() == 0 ) { future = policy.spawn( policy.create_team( TaskTeamValue( policy , result , begin - 1 ) ) ); policy.clear_dependence( this ); policy.add_dependence( this , future ); policy.respawn( this ); } return ; } Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { result[i] = i + 1 ; } ); if ( member.team_rank() == 0 ) { final = result[nvalue] ; } Kokkos::memory_fence(); } }; template< class ExecSpace > void test_task_team( long n ) { typedef TaskTeam< ExecSpace > task_type ; typedef TaskTeamValue< ExecSpace > task_value_type ; typedef typename task_type::view_type view_type ; typedef typename task_type::policy_type policy_type ; typedef typename task_type::future_type future_type ; typedef typename task_value_type::future_type future_value_type ; policy_type policy ; view_type result("result",n+1); future_type f = policy.spawn( policy.create_team( task_type( policy , result , n ) ) ); Kokkos::Experimental::wait( policy ); for ( long i = 0 ; i <= n ; ++i ) { const long answer = i + 1 ; if ( result(i) != answer ) { std::cerr << "test_task_team void ERROR result(" << i << ") = " << result(i) << " != " << answer << std::endl ; } } future_value_type fv = policy.spawn( policy.create_team( task_value_type( policy , result , n ) ) ); Kokkos::Experimental::wait( policy ); if ( fv.get() != n + 1 ) { std::cerr << "test_task_team value ERROR future = " << fv.get() << " != " << n + 1 << std::endl ; } for ( long i = 0 ; i <= n ; ++i ) { const long answer = i + 1 ; if ( result(i) != answer ) { std::cerr << "test_task_team value ERROR result(" << i << ") = " << result(i) << " != " << answer << std::endl ; } } } #endif //---------------------------------------------------------------------------- } // namespace TestTaskPolicy #endif /* #ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP */