// ************************************************************************** // dpd.cu // ------------------- // Eddy BARRAUD (IFPEN/Sorbonne) // Trung Dac Nguyen (U Chicago) // // Device code for acceleration of the dpd/coul/slater/long pair style // // __________________________________________________________________________ // This file is part of the LAMMPS Accelerator Library (LAMMPS_AL) // __________________________________________________________________________ // // begin : May 28, 2024 // email : eddy.barraud@outlook.fr // *************************************************************************** #if defined(NV_KERNEL) || defined(USE_HIP) #include "lal_aux_fun1.h" #ifndef _DOUBLE_DOUBLE _texture( pos_tex,float4); _texture( vel_tex,float4); #else _texture_2d( pos_tex,int4); _texture_2d( vel_tex,int4); #endif #else #define pos_tex x_ #define vel_tex v_ #endif #define EPSILON (numtyp)1.0e-10 //#define _USE_UNIFORM_SARU_LCG //#define _USE_UNIFORM_SARU_TEA8 //#define _USE_GAUSSIAN_SARU_LCG #if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG) #define _USE_UNIFORM_SARU_LCG #endif // References: // 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128. // 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201. // PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19 #define LCGA 0x4beb5d59 /* Full period 32 bit LCG */ #define LCGC 0x2600e1f7 #define oWeylPeriod 0xda879add /* Prime period 3666320093 */ #define oWeylOffset 0x8009d14b #define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */ // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] // using the inherent LCG, then multiply u with sqrt(3) to "match" // with a normal random distribution. // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) // Curly brackets to make variables local to the scope. #ifdef _USE_UNIFORM_SARU_LCG #define SQRT3 (numtyp)1.7320508075688772935274463 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8 // then multiply u with sqrt(3) to "match" with a normal random distribution // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) #ifdef _USE_UNIFORM_SARU_TEA8 #define SQRT3 (numtyp)1.7320508075688772935274463 #define k0 0xA341316C #define k1 0xC8013EA4 #define k2 0xAD90777D #define k3 0x7E95761E #define delta 0x9e3779b9 #define rounds 8 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int sum = 0; \ for (int i=0; i < rounds; i++) { \ sum += delta; \ state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \ wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \ } \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0], // and uses the polar method (Marsaglia's) to transform to a normal random value // This is used to compared with CPU DPD using RandMars::gaussian() #ifdef _USE_GAUSSIAN_SARU_LCG #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state=0x12345678; \ unsigned int wstate=12345678; \ state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int v, s; \ numtyp r1, r2, rsq; \ while (1) { \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ rsq = r1 * r1 + r2 * r2; \ if (rsq < (numtyp)1.0) break; \ } \ numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq); \ randnum = r2*fac; \ } #endif __kernel void k_dpd_coul_slater_long(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict extra, const __global numtyp4 *restrict coeff, const int lj_types, const __global numtyp *restrict sp_lj, const __global numtyp *restrict sp_cl_in, const __global numtyp *restrict sp_sqrt, const __global int * dev_nbor, const __global int * dev_packed, __global acctyp3 *restrict ans, __global acctyp *restrict engv, const int eflag, const int vflag, const int inum, const int nbor_pitch, const __global numtyp4 *restrict v_, const __global numtyp4 *restrict cutsq, const numtyp dtinvsqrt, const int seed, const int timestep, const numtyp qqrd2e, const numtyp g_ewald, const numtyp lamda, const int tstat_only, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); __local numtyp sp_cl[4]; ///local_allocate_store_charge(); sp_cl[0]=sp_cl_in[0]; sp_cl[1]=sp_cl_in[1]; sp_cl[2]=sp_cl_in[2]; sp_cl[3]=sp_cl_in[3]; int n_stride; local_allocate_store_pair(); acctyp3 f; f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0; acctyp e_coul, energy, virial[6]; if (EVFLAG) { energy=(acctyp)0; e_coul=(acctyp)0; for (int i=0; i<6; i++) virial[i]=(acctyp)0; } if (ii global squared cutoff if (rsq DPD squared cutoff if (rsq < cutsq[mtype].y && r > EPSILON) { numtyp rinv=ucl_recip(r); numtyp delvx = iv.x - jv.x; numtyp delvy = iv.y - jv.y; numtyp delvz = iv.z - jv.z; numtyp dot = delx*delvx + dely*delvy + delz*delvz; numtyp wd = (numtyp)1.0 - r/coeff[mtype].w; unsigned int tag1=itag, tag2=jtag; if (tag1 > tag2) { tag1 = jtag; tag2 = itag; } numtyp randnum = (numtyp)0.0; saru(tag1, tag2, seed, timestep, randnum); // conservative force = a0 * wd, or 0 if tstat only // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; if (!tstat_only) force_dpd = coeff[mtype].x*wd; force_dpd -= coeff[mtype].y*wd*wd*dot*rinv; force_dpd *= factor_dpd; force_dpd += factor_sqrt*coeff[mtype].z*wd*randnum*dtinvsqrt; force_dpd *=rinv; if (EVFLAG && eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff numtyp e = (numtyp)0.5*coeff[mtype].x*coeff[mtype].w * wd*wd; energy += factor_dpd*e; } }// if cut_dpdsq // apply Slater electrostatic force if distance below Slater cutoff // and the two species have a slater coeff // cutsq[mtype].z -> Coulombic squared cutoff if ( cutsq[mtype].z != 0.0 && rsq < cutsq[mtype].z){ numtyp r2inv=ucl_recip(rsq); numtyp _erfc; numtyp grij = g_ewald * r; numtyp expm2 = ucl_exp(-grij*grij); numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij); _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2; numtyp prefactor = extra[j].x; prefactor *= qqrd2e * cutsq[mtype].z * qtmp/r; numtyp rlamdainv = r * lamdainv; numtyp exprlmdainv = ucl_exp((numtyp)-2.0*rlamdainv); numtyp slater_term = exprlmdainv*((numtyp)1.0 + ((numtyp)2.0*rlamdainv*((numtyp)1.0+rlamdainv))); force_coul = prefactor*(_erfc + EWALD_F*grij*expm2-slater_term); if (factor_coul > (numtyp)0) force_coul -= factor_coul*prefactor*((numtyp)1.0-slater_term); force_coul *= r2inv; if (EVFLAG && eflag) { numtyp e_slater = ((numtyp)1.0 + rlamdainv)*exprlmdainv; numtyp e = prefactor*(_erfc-e_slater); if (factor_coul > (numtyp)0) e -= factor_coul*prefactor*((numtyp)1.0 - e_slater); e_coul += e; } } // if cut_coulsq numtyp force = force_coul + force_dpd; f.x += delx*force; f.y += dely*force; f.z += delz*force; if (EVFLAG && vflag) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } // if cutsq } // for nbor } // if ii store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); } __kernel void k_dpd_coul_slater_long_fast(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict extra, const __global numtyp4 *restrict coeff_in, const __global numtyp *restrict sp_lj_in, const __global numtyp *restrict sp_cl_in, const __global numtyp *restrict sp_sqrt_in, const __global int * dev_nbor, const __global int * dev_packed, __global acctyp3 *restrict ans, __global acctyp *restrict engv, const int eflag, const int vflag, const int inum, const int nbor_pitch, const __global numtyp4 *restrict v_, const __global numtyp4 *restrict cutsq_in, const numtyp dtinvsqrt, const int seed, const int timestep, const numtyp qqrd2e, const numtyp g_ewald, const numtyp lamda, const int tstat_only, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); __local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp4 cutsq[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp sp_lj[4]; __local numtyp sp_sqrt[4]; /// COUL Init __local numtyp sp_cl[4]; if (tid<4) { sp_lj[tid]=sp_lj_in[tid]; sp_sqrt[tid]=sp_sqrt_in[tid]; sp_cl[tid]=sp_cl_in[tid]; } if (tid DPD squared cutoff if (rsq < cutsq[mtype].y && r > EPSILON) { numtyp rinv=ucl_recip(r); numtyp delvx = iv.x - jv.x; numtyp delvy = iv.y - jv.y; numtyp delvz = iv.z - jv.z; numtyp dot = delx*delvx + dely*delvy + delz*delvz; numtyp wd = (numtyp)1.0 - r/coeff[mtype].w; unsigned int tag1=itag, tag2=jtag; if (tag1 > tag2) { tag1 = jtag; tag2 = itag; } numtyp randnum = (numtyp)0.0; saru(tag1, tag2, seed, timestep, randnum); // conservative force = a0 * wd, or 0 if tstat only // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; /// coeff.x = a0, coeff.y = gamma, coeff.z = sigma, coeff.w = cut_dpd if (!tstat_only) force_dpd = coeff[mtype].x*wd; force_dpd -= coeff[mtype].y*wd*wd*dot*rinv; force_dpd *= factor_dpd; force_dpd += factor_sqrt*coeff[mtype].z*wd*randnum*dtinvsqrt; force_dpd *=rinv; if (EVFLAG && eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff numtyp e = (numtyp)0.5*coeff[mtype].x*coeff[mtype].w * wd*wd; energy += factor_dpd*e; } }// if cut_dpdsq // apply Slater electrostatic force if distance below Slater cutoff // and the two species have a slater coeff // cutsq[mtype].z -> Coulombic squared cutoff if ( cutsq[mtype].z != 0.0 && rsq < cutsq[mtype].z){ numtyp r2inv=ucl_recip(rsq); numtyp _erfc; numtyp grij = g_ewald * r; numtyp expm2 = ucl_exp(-grij*grij); numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij); _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2; numtyp prefactor = extra[j].x; prefactor *= qqrd2e * cutsq[mtype].z * qtmp/r; numtyp rlamdainv = r * lamdainv; numtyp exprlmdainv = ucl_exp((numtyp)-2.0*rlamdainv); numtyp slater_term = exprlmdainv*((numtyp)1.0 + ((numtyp)2.0*rlamdainv*((numtyp)1.0+rlamdainv))); force_coul = prefactor*(_erfc + EWALD_F*grij*expm2-slater_term); if (factor_coul > (numtyp)0) force_coul -= factor_coul*prefactor*((numtyp)1.0-slater_term); force_coul *= r2inv; if (EVFLAG && eflag) { numtyp e_slater = ((numtyp)1.0 + rlamdainv)*exprlmdainv; numtyp e_sf = prefactor*(_erfc-e_slater); if (factor_coul > (numtyp)0) e_sf -= factor_coul*prefactor*((numtyp)1.0 - e_slater); e_coul += e_sf; } } // if cut_coulsq numtyp force = force_coul + force_dpd; f.x += delx*force; f.y += dely*force; f.z += delz*force; if (EVFLAG && vflag) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } // if cutsq } // for nbor } // if ii store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); }