/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define MY_PREFIX comm_cuda #include "cuda_shared.h" #include "cuda_common.h" #include "crm_cuda_utils.cu" #include "comm_cuda_cu.h" #include "comm_cuda_kernel.cu" #include void Cuda_CommCuda_UpdateBuffer(cuda_shared_data* sdata, int n) { int size = n * 3 * sizeof(X_FLOAT); if(sdata->buffersize < size) { MYDBG(printf("Cuda_ComputeTempCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);) CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize); sdata->buffer = CudaWrapper_AllocCudaData(size); sdata->buffersize = size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);) } cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*)); } void Cuda_CommCuda_UpdateNmax(cuda_shared_data* sdata) { cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int)); cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*)); cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(X_FLOAT*)); cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*)); cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*)); } void Cuda_CommCuda_Init(cuda_shared_data* sdata) { Cuda_CommCuda_UpdateNmax(sdata); int ntypesp = sdata->atom.ntypes + 1; cudaMemcpyToSymbol(MY_AP(cuda_ntypes) , &ntypesp, sizeof(int)); cudaMemcpyToSymbol(MY_AP(prd) , sdata->domain.prd, 3 * sizeof(X_FLOAT)); cudaMemcpyToSymbol(MY_AP(flag) , &sdata->flag, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(debugdata) , &sdata->debugdata, sizeof(int*)); } int Cuda_CommCuda_PackComm(cuda_shared_data* sdata, int n, int iswap, void* buf_send, int* pbc, int pbc_flag) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); X_FLOAT dx = 0.0; X_FLOAT dy = 0.0; X_FLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { cudaMemset(sdata->flag, 0, sizeof(int)); my_gettime(CLOCK_REALTIME, &time1); void* buf = sdata->overlap_comm ? sdata->comm.buf_send_dev[iswap] : sdata->buffer; Cuda_CommCuda_PackComm_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n , sdata->comm.maxlistlength, iswap, dx, dy, dz, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n * 3 * sizeof(X_FLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag != 0) printf("aflag PackComm: %i\n", aflag); CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); } return 3 * n; } int Cuda_CommCuda_PackCommVel(cuda_shared_data* sdata, int n, int iswap, void* buf_send, int* pbc, int pbc_flag) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 6 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); X_FLOAT dx = 0.0; X_FLOAT dy = 0.0; X_FLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { cudaMemset(sdata->flag, 0, sizeof(int)); my_gettime(CLOCK_REALTIME, &time1); void* buf = sdata->overlap_comm ? sdata->comm.buf_send_dev[iswap] : sdata->buffer; Cuda_CommCuda_PackComm_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n , sdata->comm.maxlistlength, iswap, dx, dy, dz, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_pack += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n * 6 * sizeof(X_FLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_download += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag != 0) printf("aflag PackComm: %i\n", aflag); CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); } return 6 * n; } int Cuda_CommCuda_PackComm_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag) { MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");) my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); static int count = -1; count++; X_FLOAT dx = 0.0; X_FLOAT dy = 0.0; X_FLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); Cuda_CommCuda_PackComm_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_self += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed"); } return 3 * n; } int Cuda_CommCuda_PackCommVel_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag) { MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");) my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 6 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); static int count = -1; count++; X_FLOAT dx = 0.0; X_FLOAT dy = 0.0; X_FLOAT dz = 0.0; if(pbc_flag != 0) { if(sdata->domain.triclinic == 0) { dx = pbc[0] * sdata->domain.prd[0]; dy = pbc[1] * sdata->domain.prd[1]; dz = pbc[2] * sdata->domain.prd[2]; } else { dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz; dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz; dz = pbc[2] * sdata->domain.prd[2]; } } int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); Cuda_CommCuda_PackComm_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_kernel_self += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed"); } return 6 * n; } void Cuda_CommCuda_UnpackComm(cuda_shared_data* sdata, int n, int first, void* buf_recv, int iswap) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); if(not sdata->overlap_comm || iswap < 0) cudaMemcpy(sdata->buffer, (void*)buf_recv, n * 3 * sizeof(X_FLOAT), cudaMemcpyHostToDevice); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_upload += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; void* buf = (sdata->overlap_comm && iswap >= 0) ? sdata->comm.buf_recv_dev[iswap] : sdata->buffer; Cuda_CommCuda_UnpackComm_Kernel <<< grid, threads, 0>>>(n, first, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_kernel_unpack += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed"); } } void Cuda_CommCuda_UnpackCommVel(cuda_shared_data* sdata, int n, int first, void* buf_recv, int iswap) { my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 6 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { my_gettime(CLOCK_REALTIME, &time1); if(not sdata->overlap_comm || iswap < 0) cudaMemcpy(sdata->buffer, (void*)buf_recv, n * 6 * sizeof(X_FLOAT), cudaMemcpyHostToDevice); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_forward_upload += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; void* buf = (sdata->overlap_comm && iswap >= 0) ? sdata->comm.buf_recv_dev[iswap] : sdata->buffer; Cuda_CommCuda_UnpackComm_Kernel <<< grid, threads, 0>>>(n, first, buf); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time1); sdata->cuda_timings.comm_forward_kernel_unpack += time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed"); } } int Cuda_CommCuda_PackReverse(cuda_shared_data* sdata, int n, int first, void* buf_send) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(F_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); F_FLOAT* buf = (F_FLOAT*)buf_send; F_FLOAT* f_dev = (F_FLOAT*)sdata->atom.f.dev_data; f_dev += first; cudaMemcpy(buf, f_dev, n * sizeof(F_FLOAT), cudaMemcpyDeviceToHost); buf += n; f_dev += sdata->atom.nmax; cudaMemcpy(buf, f_dev, n * sizeof(F_FLOAT), cudaMemcpyDeviceToHost); buf += n; f_dev += sdata->atom.nmax; cudaMemcpy(buf, f_dev, n * sizeof(F_FLOAT), cudaMemcpyDeviceToHost); return n * 3; } void Cuda_CommCuda_UnpackReverse(cuda_shared_data* sdata, int n, int iswap, void* buf_recv) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(F_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { cudaMemcpy(sdata->buffer, buf_recv, size, cudaMemcpyHostToDevice); Cuda_CommCuda_UnpackReverse_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_CommCuda_UnpackReverse: Kernel execution failed"); } } void Cuda_CommCuda_UnpackReverse_Self(cuda_shared_data* sdata, int n, int iswap, int first) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); int size = n * 3 * sizeof(X_FLOAT); if(sdata->buffer_new or (size > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, n); int3 layout = getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal > 0) { Cuda_CommCuda_UnpackReverse_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, first); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_CommCuda_PackReverse_Self: Kernel execution failed"); } } int Cuda_CommCuda_BuildSendlist(cuda_shared_data* sdata, int bordergroup, int ineed, int style, int atom_nfirst, int nfirst, int nlast, int dim, int iswap) { MYDBG(printf(" # CUDA: CommCuda_BuildSendlist\n");) my_times time1, time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); if(sdata->buffer_new or (80 > sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata, 10); int n; if(!bordergroup || ineed >= 2) n = nlast - nfirst + 1; else { n = atom_nfirst; if(nlast - sdata->atom.nlocal + 1 > n) n = nlast - sdata->atom.nlocal + 1; } int3 layout = getgrid(n, 0, 512, true); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x + 1, layout.y, 1); cudaMemset((int*)(sdata->buffer), 0, sizeof(int)); my_gettime(CLOCK_REALTIME, &time1); if(style == 1) Cuda_CommCuda_BuildSendlist_Single <<< grid, threads, (threads.x + 1)*sizeof(int) >>> (bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap, (X_FLOAT*) sdata->comm.slablo.dev_data, (X_FLOAT*) sdata->comm.slabhi.dev_data, (int*) sdata->comm.sendlist.dev_data, sdata->comm.maxlistlength); else Cuda_CommCuda_BuildSendlist_Multi <<< grid, threads, (threads.x + 1)*sizeof(int) >>> (bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap, (X_FLOAT*) sdata->comm.multilo.dev_data, (X_FLOAT*) sdata->comm.multihi.dev_data, (int*) sdata->comm.sendlist.dev_data, sdata->comm.maxlistlength); cudaThreadSynchronize(); my_gettime(CLOCK_REALTIME, &time2); sdata->cuda_timings.comm_border_kernel_buildlist += time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_BuildSendlist: Kernel execution failed"); int nsend; cudaMemcpy(&nsend, sdata->buffer, sizeof(int), cudaMemcpyDeviceToHost); return nsend; }