/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Axel Kohlmeyer and Richard Berger (Temple U) ------------------------------------------------------------------------- */ #include #include #include #include #include "pair_python.h" #include "atom.h" #include "comm.h" #include "force.h" #include "memory.h" #include "update.h" #include "neigh_list.h" #include "python.h" #include "error.h" #include "python_compat.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairPython::PairPython(LAMMPS *lmp) : Pair(lmp) { respa_enable = 0; single_enable = 1; writedata = 0; restartinfo = 0; one_coeff = 1; reinitflag = 0; py_potential = NULL; skip_types = NULL; python->init(); // add current directory to PYTHONPATH PyObject * py_path = PySys_GetObject((char *)"path"); PyList_Append(py_path, PY_STRING_FROM_STRING(".")); // if LAMMPS_POTENTIALS environment variable is set, add it to PYTHONPATH as well const char * potentials_path = getenv("LAMMPS_POTENTIALS"); if (potentials_path != NULL) { PyList_Append(py_path, PY_STRING_FROM_STRING(potentials_path)); } } /* ---------------------------------------------------------------------- */ PairPython::~PairPython() { if (py_potential) Py_DECREF((PyObject*) py_potential); delete[] skip_types; if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } } /* ---------------------------------------------------------------------- */ void PairPython::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,factor_lj; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // prepare access to compute_force and compute_energy functions PyGILState_STATE gstate = PyGILState_Ensure(); PyObject *py_pair_instance = (PyObject *) py_potential; PyObject *py_compute_force = PyObject_GetAttrString(py_pair_instance,"compute_force"); if (!py_compute_force) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'compute_force' method'"); } if (!PyCallable_Check(py_compute_force)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'compute_force' is not callable"); } PyObject *py_compute_energy = PyObject_GetAttrString(py_pair_instance,"compute_energy"); if (!py_compute_energy) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'compute_energy' method'"); } if (!PyCallable_Check(py_compute_energy)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'compute_energy' is not callable"); } PyObject *py_compute_args = PyTuple_New(3); if (!py_compute_args) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not create tuple for 'compute' function arguments"); } PyObject *py_rsq, *py_itype, *py_jtype, *py_value; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; py_itype = PY_INT_FROM_LONG(itype); PyTuple_SetItem(py_compute_args,1,py_itype); for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; // with hybrid/overlay we might get called for skipped types if (skip_types[itype] || skip_types[jtype]) continue; py_jtype = PY_INT_FROM_LONG(jtype); PyTuple_SetItem(py_compute_args,2,py_jtype); if (rsq < cutsq[itype][jtype]) { py_rsq = PyFloat_FromDouble(rsq); PyTuple_SetItem(py_compute_args,0,py_rsq); py_value = PyObject_CallObject(py_compute_force,py_compute_args); if (!py_value) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Calling 'compute_force' function failed"); } fpair = factor_lj*PyFloat_AsDouble(py_value); f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { py_value = PyObject_CallObject(py_compute_energy,py_compute_args); evdwl = factor_lj*PyFloat_AsDouble(py_value); } else evdwl = 0.0; if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } Py_DECREF(py_compute_args); PyGILState_Release(gstate); if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairPython::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairPython::settings(int narg, char **arg) { if (narg != 1) error->all(FLERR,"Illegal pair_style command"); cut_global = force->numeric(FLERR,arg[0]); } /* ---------------------------------------------------------------------- set coeffs for all type pairs ------------------------------------------------------------------------- */ void PairPython::coeff(int narg, char **arg) { const int ntypes = atom->ntypes; if (narg != 3+ntypes) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); // make sure I,J args are * * if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0) error->all(FLERR,"Incorrect args for pair coefficients"); // check if python potential file exists and source it char * full_cls_name = arg[2]; char * lastpos = strrchr(full_cls_name, '.'); if (lastpos == NULL) { error->all(FLERR,"Python pair style requires fully qualified class name"); } size_t module_name_length = strlen(full_cls_name) - strlen(lastpos); size_t cls_name_length = strlen(lastpos)-1; char * module_name = new char[module_name_length+1]; char * cls_name = new char[cls_name_length+1]; strncpy(module_name, full_cls_name, module_name_length); module_name[module_name_length] = 0; strcpy(cls_name, lastpos+1); PyGILState_STATE gstate = PyGILState_Ensure(); PyObject * pModule = PyImport_ImportModule(module_name); if (!pModule) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Loading python pair style module failure"); } // create LAMMPS atom type to potential file type mapping in python class // by calling 'lammps_pair_style.map_coeff(name,type)' PyObject *py_pair_type = PyObject_GetAttrString(pModule, cls_name); if (!py_pair_type) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find pair style class in module'"); } delete [] module_name; delete [] cls_name; PyObject * py_pair_instance = PyObject_CallObject(py_pair_type, NULL); if (!py_pair_instance) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not instantiate instance of pair style class'"); } py_potential = (void *) py_pair_instance; PyObject *py_check_units = PyObject_GetAttrString(py_pair_instance,"check_units"); if (!py_check_units) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'check_units' method'"); } if (!PyCallable_Check(py_check_units)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'check_units' is not callable"); } PyObject *py_units_args = PyTuple_New(1); if (!py_units_args) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not create tuple for 'check_units' function arguments"); } PyObject *py_name = PY_STRING_FROM_STRING(update->unit_style); PyTuple_SetItem(py_units_args,0,py_name); PyObject *py_value = PyObject_CallObject(py_check_units,py_units_args); if (!py_value) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Calling 'check_units' function failed"); } Py_DECREF(py_units_args); PyObject *py_map_coeff = PyObject_GetAttrString(py_pair_instance,"map_coeff"); if (!py_map_coeff) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'map_coeff' method'"); } if (!PyCallable_Check(py_map_coeff)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'map_coeff' is not callable"); } PyObject *py_map_args = PyTuple_New(2); if (!py_map_args) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not create tuple for 'map_coeff' function arguments"); } delete[] skip_types; skip_types = new int[ntypes+1]; skip_types[0] = 1; for (int i = 1; i <= ntypes ; i++) { if (strcmp(arg[2+i],"NULL") == 0) { skip_types[i] = 1; continue; } else skip_types[i] = 0; PyObject *py_type = PY_INT_FROM_LONG(i); py_name = PY_STRING_FROM_STRING(arg[2+i]); PyTuple_SetItem(py_map_args,0,py_name); PyTuple_SetItem(py_map_args,1,py_type); py_value = PyObject_CallObject(py_map_coeff,py_map_args); if (!py_value) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Calling 'map_coeff' function failed"); } for (int j = i; j <= ntypes ; j++) { setflag[i][j] = 1; cutsq[i][j] = cut_global*cut_global; } } Py_DECREF(py_map_args); PyGILState_Release(gstate); } /* ---------------------------------------------------------------------- */ double PairPython::init_one(int, int) { return cut_global; } /* ---------------------------------------------------------------------- */ double PairPython::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_lj, double &fforce) { // with hybrid/overlay we might get called for skipped types if (skip_types[itype] || skip_types[jtype]) { fforce = 0.0; return 0.0; } // prepare access to compute_force and compute_energy functions PyGILState_STATE gstate = PyGILState_Ensure(); PyObject *py_pair_instance = (PyObject *) py_potential; PyObject *py_compute_force = PyObject_GetAttrString(py_pair_instance,"compute_force"); if (!py_compute_force) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'compute_force' method'"); } if (!PyCallable_Check(py_compute_force)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'compute_force' is not callable"); } PyObject *py_compute_energy = PyObject_GetAttrString(py_pair_instance,"compute_energy"); if (!py_compute_energy) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not find 'compute_energy' method'"); } if (!PyCallable_Check(py_compute_energy)) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Python 'compute_energy' is not callable"); } PyObject *py_rsq, *py_itype, *py_jtype, *py_value; PyObject *py_compute_args = PyTuple_New(3); if (!py_compute_args) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Could not create tuple for 'compute' function arguments"); } py_itype = PY_INT_FROM_LONG(itype); PyTuple_SetItem(py_compute_args,1,py_itype); py_jtype = PY_INT_FROM_LONG(jtype); PyTuple_SetItem(py_compute_args,2,py_jtype); py_rsq = PyFloat_FromDouble(rsq); PyTuple_SetItem(py_compute_args,0,py_rsq); py_value = PyObject_CallObject(py_compute_force,py_compute_args); if (!py_value) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Calling 'compute_force' function failed"); } fforce = factor_lj*PyFloat_AsDouble(py_value); py_value = PyObject_CallObject(py_compute_energy,py_compute_args); if (!py_value) { PyErr_Print(); PyErr_Clear(); PyGILState_Release(gstate); error->all(FLERR,"Calling 'compute_energy' function failed"); } double evdwl = factor_lj*PyFloat_AsDouble(py_value); Py_DECREF(py_compute_args); PyGILState_Release(gstate); return evdwl; }