/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Shawn Coleman (ARL) ------------------------------------------------------------------------- */ #include "fix_ave_histo_weight.h" #include #include #include "fix.h" #include "atom.h" #include "update.h" #include "modify.h" #include "compute.h" #include "input.h" #include "variable.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace FixConst; enum{X,V,F,COMPUTE,FIX,VARIABLE}; enum{ONE,RUNNING}; enum{SCALAR,VECTOR,WINDOW}; enum{DEFAULT,GLOBAL,PERATOM,LOCAL}; enum{IGNORE,END,EXTRA}; enum{SINGLE,VALUE}; #define INVOKED_SCALAR 1 #define INVOKED_VECTOR 2 #define INVOKED_ARRAY 4 #define INVOKED_PERATOM 8 #define INVOKED_LOCAL 16 #define BIG 1.0e20 /* ---------------------------------------------------------------------- */ FixAveHistoWeight::FixAveHistoWeight(LAMMPS *lmp, int narg, char **arg) : FixAveHisto(lmp, narg, arg) { // nvalues = 2 required for histo/weight if (nvalues != 2) error->all(FLERR,"Illegal fix ave/histo/weight command"); // check that length of 2 values is the same int size[2]; for (int i = 0; i < nvalues; i++) { if (which[i] == X || which[i] == V || which[i] == F) { size[i] = atom->nlocal; } else if (which[i] == COMPUTE && kind == GLOBAL && mode == SCALAR) { int icompute = modify->find_compute(ids[i]); size[i] = modify->compute[icompute]->size_vector; } else if (which[i] == COMPUTE && kind == GLOBAL && mode == VECTOR) { int icompute = modify->find_compute(ids[i]); size[i] = modify->compute[icompute]->size_array_rows; } else if (which[i] == COMPUTE && kind == PERATOM) { size[i] = atom->nlocal; } else if (which[i] == COMPUTE && kind == LOCAL) { int icompute = modify->find_compute(ids[i]); size[i] = modify->compute[icompute]->size_local_rows; } else if (which[i] == FIX && kind == GLOBAL && mode == SCALAR) { int ifix = modify->find_fix(ids[i]); size[i] = modify->fix[ifix]->size_vector; } else if (which[i] == FIX && kind == GLOBAL && mode == VECTOR) { int ifix = modify->find_fix(ids[i]); size[i]= modify->fix[ifix]->size_array_rows; } else if (which[i] == FIX && kind == PERATOM) { size[i] = atom->nlocal; } else if (which[i] == FIX && kind == LOCAL) { int ifix = modify->find_fix(ids[i]); size[i] = modify->fix[ifix]->size_local_rows; } else if (which[i] == VARIABLE && kind == PERATOM) { size[i] = atom->nlocal; } } if (size[0] != size[1]) error->all(FLERR,"Fix ave/histo/weight value and weight vector " "lengths do not match"); } /* ---------------------------------------------------------------------- */ void FixAveHistoWeight::end_of_step() { int i,j,m; // skip if not step which requires doing something // error check if timestep was reset in an invalid manner bigint ntimestep = update->ntimestep; if (ntimestep < nvalid_last || ntimestep > nvalid) error->all(FLERR,"Invalid timestep reset for fix ave/histo"); if (ntimestep != nvalid) return; nvalid_last = nvalid; // zero if first step if (irepeat == 0) { stats[0] = stats[1] = 0.0; stats[2] = BIG; stats[3] = -BIG; for (i = 0; i < nbins; i++) bin[i] = 0.0; } // first calculate weight factors, then bin single value // accumulate results of computes,fixes,variables to local copy // compute/fix/variable may invoke computes so wrap with clear/add modify->clearstep_compute(); // calculate weight factors which are 2nd value (i = 1) double weight = 0.0; double *weights = NULL; int stride = 0; i = 1; m = value2index[i]; j = argindex[i]; // atom attributes if (which[i] == X) { weights = &atom->x[0][j]; stride = 3; } else if (which[i] == V){ weights = &atom->v[0][j]; stride = 3; bin_atoms(&atom->v[0][j],3); } else if (which[i] == F) { weights = &atom->f[0][j]; stride = 3; } // invoke compute if not previously invoked if (which[i] == COMPUTE) { Compute *compute = modify->compute[m]; if (kind == GLOBAL && mode == SCALAR) { if (j == 0) { if (!(compute->invoked_flag & INVOKED_SCALAR)) { compute->compute_scalar(); compute->invoked_flag |= INVOKED_SCALAR; } weight = compute->scalar; } else { if (!(compute->invoked_flag & INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= INVOKED_VECTOR; } weight = compute->vector[j-1]; } } else if (kind == GLOBAL && mode == VECTOR) { if (j == 0) { if (!(compute->invoked_flag & INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= INVOKED_VECTOR; } weights = compute->vector; stride = 1; } else { if (!(compute->invoked_flag & INVOKED_ARRAY)) { compute->compute_array(); compute->invoked_flag |= INVOKED_ARRAY; } if (compute->array) weights = &compute->array[0][j-1]; stride = compute->size_array_cols; } } else if (kind == PERATOM) { if (!(compute->invoked_flag & INVOKED_PERATOM)) { compute->compute_peratom(); compute->invoked_flag |= INVOKED_PERATOM; } if (j == 0) { weights = compute->vector_atom; stride = 1; } else if (compute->array_atom) { weights = &compute->array_atom[0][j-1]; stride = compute->size_peratom_cols; } } else if (kind == LOCAL) { if (!(compute->invoked_flag & INVOKED_LOCAL)) { compute->compute_local(); compute->invoked_flag |= INVOKED_LOCAL; } if (j == 0) { weights = compute->vector_local; stride = 1; } else if (compute->array_local) { weights = &compute->array_local[0][j-1]; stride = compute->size_local_cols; } } // access fix fields, guaranteed to be ready } else if (which[i] == FIX) { Fix *fix = modify->fix[m]; if (kind == GLOBAL && mode == SCALAR) { if (j == 0) weight = fix->compute_scalar(); else weight = fix->compute_vector(j-1); } else if (kind == GLOBAL && mode == VECTOR) { error->all(FLERR,"Fix ave/histo/weight option not yet supported"); // NOTE: need to allocate local storage if (j == 0) { int n = fix->size_vector; for (i = 0; i < n; i++) weights[n] = fix->compute_vector(i); } else { int n = fix->size_vector; for (i = 0; i < n; i++) weights[n] = fix->compute_array(i,j-1); } } else if (kind == PERATOM) { if (j == 0) { weights = fix->vector_atom; stride = 1; } else if (fix->array_atom) { weights = fix->array_atom[j-1]; stride = fix->size_peratom_cols; } } else if (kind == LOCAL) { if (j == 0) { weights = fix->vector_local; stride = 1; } else if (fix->array_local) { weights = &fix->array_local[0][j-1]; stride = fix->size_local_cols; } } // evaluate equal-style variable } else if (which[i] == VARIABLE && kind == GLOBAL) { weight = input->variable->compute_equal(m); } else if (which[i] == VARIABLE && kind == PERATOM) { if (atom->nmax > maxatom) { memory->destroy(vector); maxatom = atom->nmax; memory->create(vector,maxatom,"ave/histo/weight:vector"); } input->variable->compute_atom(m,igroup,vector,1,0); weights = vector; stride = 1; } // bin values using weights, values are 1st value (i = 0) i = 0; m = value2index[i]; j = argindex[i]; // atom attributes if (which[i] == X && weights != NULL) bin_atoms_weights(&atom->x[0][j],3,weights,stride); else if (which[i] == V && weights != NULL) bin_atoms_weights(&atom->v[0][j],3,weights,stride); else if (which[i] == F && weights != NULL) bin_atoms_weights(&atom->f[0][j],3,weights,stride); // invoke compute if not previously invoked if (which[i] == COMPUTE) { Compute *compute = modify->compute[m]; if (kind == GLOBAL && mode == SCALAR) { if (j == 0) { if (!(compute->invoked_flag & INVOKED_SCALAR)) { compute->compute_scalar(); compute->invoked_flag |= INVOKED_SCALAR; } bin_one_weights(compute->scalar,weight); } else { if (!(compute->invoked_flag & INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= INVOKED_VECTOR; } bin_one_weights(compute->vector[j-1],weight); } } else if (kind == GLOBAL && mode == VECTOR) { if (j == 0) { if (!(compute->invoked_flag & INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= INVOKED_VECTOR; } bin_vector_weights(compute->size_vector,compute->vector,1, weights,stride); } else { if (!(compute->invoked_flag & INVOKED_ARRAY)) { compute->compute_array(); compute->invoked_flag |= INVOKED_ARRAY; } if (compute->array) bin_vector_weights(compute->size_array_rows,&compute->array[0][j-1], compute->size_array_cols,weights,stride); } } else if (kind == PERATOM) { if (!(compute->invoked_flag & INVOKED_PERATOM)) { compute->compute_peratom(); compute->invoked_flag |= INVOKED_PERATOM; } if (j == 0) bin_atoms_weights(compute->vector_atom,1,weights, stride); else if (compute->array_atom) bin_atoms_weights(&compute->array_atom[0][j-1], compute->size_peratom_cols,weights,stride); } else if (kind == LOCAL) { if (!(compute->invoked_flag & INVOKED_LOCAL)) { compute->compute_local(); compute->invoked_flag |= INVOKED_LOCAL; } if (j == 0) bin_vector_weights(compute->size_local_rows, compute->vector_local,1,weights,stride); else if (compute->array_local) bin_vector_weights(compute->size_local_rows, &compute->array_local[0][j-1], compute->size_local_cols,weights,stride); } // access fix fields, guaranteed to be ready } else if (which[i] == FIX) { Fix *fix = modify->fix[m]; if (kind == GLOBAL && mode == SCALAR) { if (j == 0) bin_one_weights(fix->compute_scalar(),weight); else bin_one_weights(fix->compute_vector(j-1),weight); } else if (kind == GLOBAL && mode == VECTOR) { if (j == 0) { int n = fix->size_vector; for (i = 0; i < n; i++) bin_one_weights(fix->compute_vector(i),weights[i*stride]); } else { int n = fix->size_vector; for (i = 0; i < n; i++) bin_one_weights(fix->compute_array(i,j-1),weights[i*stride]); } } else if (kind == PERATOM) { if (j == 0) bin_atoms_weights(fix->vector_atom,1,weights,stride); else if (fix->array_atom) bin_atoms_weights(fix->array_atom[j-1],fix->size_peratom_cols, weights,stride); } else if (kind == LOCAL) { if (j == 0) bin_vector_weights(fix->size_local_rows,fix->vector_local,1, weights,stride); else if (fix->array_local) bin_vector_weights(fix->size_local_rows,&fix->array_local[0][j-1], fix->size_local_cols,weights,stride); } // evaluate equal-style variable } else if (which[i] == VARIABLE && kind == GLOBAL) { bin_one_weights(input->variable->compute_equal(m),weight); } else if (which[i] == VARIABLE && kind == PERATOM) { if (atom->nmax > maxatom) { memory->destroy(vector); maxatom = atom->nmax; memory->create(vector,maxatom,"ave/histo/weight:vector"); } input->variable->compute_atom(m,igroup,vector,1,0); bin_atoms_weights(vector,1,weights,stride); } // code beyond this point is identical to FixAveHisto // done if irepeat < nrepeat // else reset irepeat and nvalid irepeat++; if (irepeat < nrepeat) { nvalid += nevery; modify->addstep_compute(nvalid); return; } irepeat = 0; nvalid = ntimestep + nfreq - (nrepeat-1)*nevery; modify->addstep_compute(nvalid); // merge histogram stats across procs if necessary if (kind == PERATOM || kind == LOCAL) { MPI_Allreduce(stats,stats_all,2,MPI_DOUBLE,MPI_SUM,world); MPI_Allreduce(&stats[2],&stats_all[2],1,MPI_DOUBLE,MPI_MIN,world); MPI_Allreduce(&stats[3],&stats_all[3],1,MPI_DOUBLE,MPI_MAX,world); MPI_Allreduce(bin,bin_all,nbins,MPI_DOUBLE,MPI_SUM,world); stats[0] = stats_all[0]; stats[1] = stats_all[1]; stats[2] = stats_all[2]; stats[3] = stats_all[3]; for (i = 0; i < nbins; i++) bin[i] = bin_all[i]; } // if ave = ONE, only single Nfreq timestep value is needed // if ave = RUNNING, combine with all previous Nfreq timestep values // if ave = WINDOW, combine with nwindow most recent Nfreq timestep values if (ave == ONE) { stats_total[0] = stats[0]; stats_total[1] = stats[1]; stats_total[2] = stats[2]; stats_total[3] = stats[3]; for (i = 0; i < nbins; i++) bin_total[i] = bin[i]; } else if (ave == RUNNING) { stats_total[0] += stats[0]; stats_total[1] += stats[1]; stats_total[2] = MIN(stats_total[2],stats[2]); stats_total[3] = MAX(stats_total[3],stats[3]); for (i = 0; i < nbins; i++) bin_total[i] += bin[i]; } else if (ave == WINDOW) { stats_total[0] += stats[0]; if (window_limit) stats_total[0] -= stats_list[iwindow][0]; stats_list[iwindow][0] = stats[0]; stats_total[1] += stats[1]; if (window_limit) stats_total[1] -= stats_list[iwindow][1]; stats_list[iwindow][1] = stats[1]; if (window_limit) m = nwindow; else m = iwindow+1; stats_list[iwindow][2] = stats[2]; stats_total[2] = stats_list[0][2]; for (i = 1; i < m; i++) stats_total[2] = MIN(stats_total[2],stats_list[i][2]); stats_list[iwindow][3] = stats[3]; stats_total[3] = stats_list[0][3]; for (i = 1; i < m; i++) stats_total[3] = MAX(stats_total[3],stats_list[i][3]); for (i = 0; i < nbins; i++) { bin_total[i] += bin[i]; if (window_limit) bin_total[i] -= bin_list[iwindow][i]; bin_list[iwindow][i] = bin[i]; } iwindow++; if (iwindow == nwindow) { iwindow = 0; window_limit = 1; } } // output result to file if (fp && me == 0) { clearerr(fp); if (overwrite) fseek(fp,filepos,SEEK_SET); fprintf(fp,BIGINT_FORMAT " %d %g %g %g %g\n",ntimestep,nbins, stats_total[0],stats_total[1],stats_total[2],stats_total[3]); if (stats_total[0] != 0.0) for (i = 0; i < nbins; i++) fprintf(fp,"%d %g %g %g\n", i+1,coord[i],bin_total[i],bin_total[i]/stats_total[0]); else for (i = 0; i < nbins; i++) fprintf(fp,"%d %g %g %g\n",i+1,coord[i],0.0,0.0); if (ferror(fp)) error->one(FLERR,"Error writing out histogram data"); fflush(fp); if (overwrite) { long fileend = ftell(fp); if ((fileend > 0) && (ftruncate(fileno(fp),fileend))) perror("Error while tuncating output"); } } } /* ---------------------------------------------------------------------- bin a single value with weight) ------------------------------------------------------------------------- */ void FixAveHistoWeight::bin_one_weights(double value, double weight) { stats[2] = MIN(stats[2],value); stats[3] = MAX(stats[3],value); if (value < lo) { if (beyond == IGNORE) { stats[1] += weight; return; } else bin[0] += weight; } else if (value > hi) { if (beyond == IGNORE) { stats[1] += weight; return; } else bin[nbins-1] += weight; } else { int ibin = static_cast ((value-lo)*bininv); ibin = MIN(ibin,nbins-1); if (beyond == EXTRA) ibin++; bin[ibin] += weight; } stats[0] += weight; } /* ---------------------------------------------------------------------- bin a vector of values with weights values and weights each have a stride ------------------------------------------------------------------------- */ void FixAveHistoWeight::bin_vector_weights(int n, double *values, int stride, double *weights, int stridewt) { int m = 0; int m2 = 0; for (int i = 0; i < n; i++) { bin_one_weights(values[m],weights[m2]); m += stride; m2 += stridewt; } } /* ---------------------------------------------------------------------- bin a per-atom vector of values with weights values and weights each have a stride only bin if atom is in group ------------------------------------------------------------------------- */ void FixAveHistoWeight::bin_atoms_weights(double *values, int stride, double *weights, int stridewt) { int *mask = atom->mask; int nlocal = atom->nlocal; int m = 0; int m2 = 0; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) bin_one_weights(values[m],weights[m2]); m += stride; m2 += stridewt; } }