/* //@HEADER // ************************************************************************ // // Kokkos v. 3.0 // Copyright (2020) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #ifndef KOKKOS_TEST_DUALVIEW_HPP #define KOKKOS_TEST_DUALVIEW_HPP #include #include #include #include #include #include namespace Test { namespace Impl { template struct test_dualview_alloc { using scalar_type = Scalar; using execution_space = Device; template bool run_me(unsigned int n, unsigned int m) { if (n < 10) n = 10; if (m < 3) m = 3; { ViewType b1; if (b1.is_allocated() == true) return false; b1 = ViewType("B1", n, m); ViewType b2(b1); ViewType b3("B3", n, m); if (b1.is_allocated() == false) return false; if (b2.is_allocated() == false) return false; if (b3.is_allocated() == false) return false; } return true; } bool result = false; test_dualview_alloc(unsigned int size) { result = run_me >( size, 3); } }; template struct test_dualview_combinations { using self_type = test_dualview_combinations; using scalar_type = Scalar; using execution_space = Device; Scalar reference; Scalar result; template Scalar run_me(unsigned int n, unsigned int m, bool with_init) { if (n < 10) n = 10; if (m < 3) m = 3; ViewType a; if (with_init) { a = ViewType("A", n, m); } else { a = ViewType(Kokkos::view_alloc(Kokkos::WithoutInitializing, "A"), n, m); } Kokkos::deep_copy(a.d_view, 1); a.template modify(); a.template sync(); a.template sync( Kokkos::DefaultExecutionSpace{}); a.h_view(5, 1) = 3; a.h_view(6, 1) = 4; a.h_view(7, 2) = 5; a.template modify(); ViewType b = Kokkos::subview(a, std::pair(6, 9), std::pair(0, 1)); a.template sync(); a.template sync( Kokkos::DefaultExecutionSpace{}); b.template modify(); Kokkos::deep_copy(b.d_view, 2); a.template sync(); a.template sync( Kokkos::DefaultExecutionSpace{}); Scalar count = 0; for (unsigned int i = 0; i < a.d_view.extent(0); i++) for (unsigned int j = 0; j < a.d_view.extent(1); j++) count += a.h_view(i, j); return count - a.d_view.extent(0) * a.d_view.extent(1) - 2 - 4 - 3 * 2; } test_dualview_combinations(unsigned int size, bool with_init) { result = run_me >( size, 3, with_init); } }; template struct SumViewEntriesFunctor { using value_type = Scalar; ViewType fv; SumViewEntriesFunctor(const ViewType& fv_) : fv(fv_) {} KOKKOS_INLINE_FUNCTION void operator()(const int i, value_type& total) const { for (size_t j = 0; j < fv.extent(1); ++j) { total += fv(i, j); } } }; template struct test_dual_view_deep_copy { using scalar_type = Scalar; using execution_space = Device; template void run_me(int n, const int m, const bool use_templ_sync) { ViewType a, b; if (n >= 0) { a = ViewType("A", n, m); b = ViewType("B", n, m); } else { n = 0; } const scalar_type sum_total = scalar_type(n * m); Kokkos::deep_copy(a.d_view, 1); if (use_templ_sync) { a.template modify(); a.template sync(); } else { a.modify_device(); a.sync_host(); a.sync_host(Kokkos::DefaultExecutionSpace{}); } // Check device view is initialized as expected scalar_type a_d_sum = 0; // Execute on the execution_space associated with t_dev's memory space using t_dev_exec_space = typename ViewType::t_dev::memory_space::execution_space; Kokkos::parallel_reduce( Kokkos::RangePolicy(0, n), SumViewEntriesFunctor(a.d_view), a_d_sum); ASSERT_EQ(a_d_sum, sum_total); // Check host view is synced as expected scalar_type a_h_sum = 0; for (size_t i = 0; i < a.h_view.extent(0); ++i) for (size_t j = 0; j < a.h_view.extent(1); ++j) { a_h_sum += a.h_view(i, j); } ASSERT_EQ(a_h_sum, sum_total); // Test deep_copy Kokkos::deep_copy(b, a); if (use_templ_sync) { b.template sync(); } else { b.sync_host(); b.sync_host(Kokkos::DefaultExecutionSpace{}); } // Perform same checks on b as done on a // Check device view is initialized as expected scalar_type b_d_sum = 0; // Execute on the execution_space associated with t_dev's memory space Kokkos::parallel_reduce( Kokkos::RangePolicy(0, n), SumViewEntriesFunctor(b.d_view), b_d_sum); ASSERT_EQ(b_d_sum, sum_total); // Check host view is synced as expected scalar_type b_h_sum = 0; for (size_t i = 0; i < b.h_view.extent(0); ++i) for (size_t j = 0; j < b.h_view.extent(1); ++j) { b_h_sum += b.h_view(i, j); } ASSERT_EQ(b_h_sum, sum_total); } // end run_me test_dual_view_deep_copy() { run_me >(10, 5, true); run_me >(10, 5, false); // Test zero length but allocated (a.d_view.data!=nullptr but // a.d_view.span()==0) run_me >(0, 5, true); run_me >(0, 5, false); // Test default constructed view run_me >(-1, 5, true); run_me >(-1, 5, false); } }; template struct test_dualview_resize { using scalar_type = Scalar; using execution_space = Device; template void run_me() { const unsigned int n = 10; const unsigned int m = 5; const unsigned int factor = 2; ViewType a("A", n, m); Kokkos::deep_copy(a.d_view, 1); /* Covers case "Resize on Device" */ a.modify_device(); Kokkos::resize(a, factor * n, factor * m); ASSERT_EQ(a.extent(0), n * factor); ASSERT_EQ(a.extent(1), m * factor); Kokkos::deep_copy(a.d_view, 1); a.sync_host(); // Check device view is initialized as expected scalar_type a_d_sum = 0; // Execute on the execution_space associated with t_dev's memory space using t_dev_exec_space = typename ViewType::t_dev::memory_space::execution_space; Kokkos::parallel_reduce( Kokkos::RangePolicy(0, a.d_view.extent(0)), SumViewEntriesFunctor(a.d_view), a_d_sum); // Check host view is synced as expected scalar_type a_h_sum = 0; for (size_t i = 0; i < a.h_view.extent(0); ++i) for (size_t j = 0; j < a.h_view.extent(1); ++j) { a_h_sum += a.h_view(i, j); } // Check ASSERT_EQ(a_h_sum, a_d_sum); ASSERT_EQ(a_h_sum, a.extent(0) * a.extent(1)); /* Covers case "Resize on Host" */ a.modify_host(); Kokkos::resize(a, n / factor, m / factor); ASSERT_EQ(a.extent(0), n / factor); ASSERT_EQ(a.extent(1), m / factor); a.sync_device(); a.sync_device(Kokkos::DefaultExecutionSpace{}); // Check device view is initialized as expected a_d_sum = 0; // Execute on the execution_space associated with t_dev's memory space using t_dev_exec_space = typename ViewType::t_dev::memory_space::execution_space; Kokkos::parallel_reduce( Kokkos::RangePolicy(0, a.d_view.extent(0)), SumViewEntriesFunctor(a.d_view), a_d_sum); // Check host view is synced as expected a_h_sum = 0; for (size_t i = 0; i < a.h_view.extent(0); ++i) for (size_t j = 0; j < a.h_view.extent(1); ++j) { a_h_sum += a.h_view(i, j); } // Check ASSERT_EQ(a_h_sum, a.extent(0) * a.extent(1)); ASSERT_EQ(a_h_sum, a_d_sum); } // end run_me test_dualview_resize() { run_me >(); } }; template struct test_dualview_realloc { using scalar_type = Scalar; using execution_space = Device; template void run_me() { const unsigned int n = 10; const unsigned int m = 5; ViewType a("A", n, m); Kokkos::realloc(a, n, m); Kokkos::deep_copy(a.d_view, 1); a.modify_device(); a.sync_host(); // Check device view is initialized as expected scalar_type a_d_sum = 0; // Execute on the execution_space associated with t_dev's memory space using t_dev_exec_space = typename ViewType::t_dev::memory_space::execution_space; Kokkos::parallel_reduce( Kokkos::RangePolicy(0, a.d_view.extent(0)), SumViewEntriesFunctor(a.d_view), a_d_sum); // Check host view is synced as expected scalar_type a_h_sum = 0; for (size_t i = 0; i < a.h_view.extent(0); ++i) for (size_t j = 0; j < a.h_view.extent(1); ++j) { a_h_sum += a.h_view(i, j); } // Check ASSERT_EQ(a_h_sum, a.extent(0) * a.extent(1)); ASSERT_EQ(a_h_sum, a_d_sum); } // end run_me test_dualview_realloc() { run_me >(); } }; } // namespace Impl template void test_dualview_combinations(unsigned int size, bool with_init) { Impl::test_dualview_combinations test(size, with_init); ASSERT_EQ(test.result, 0); } template void test_dualview_alloc(unsigned int size) { Impl::test_dualview_alloc test(size); ASSERT_TRUE(test.result); } template void test_dualview_deep_copy() { Impl::test_dual_view_deep_copy(); } template void test_dualview_realloc() { Impl::test_dualview_realloc(); } template void test_dualview_resize() { Impl::test_dualview_resize(); } TEST(TEST_CATEGORY, dualview_combination) { test_dualview_combinations(10, true); } TEST(TEST_CATEGORY, dualview_alloc) { test_dualview_alloc(10); } TEST(TEST_CATEGORY, dualview_combinations_without_init) { test_dualview_combinations(10, false); } TEST(TEST_CATEGORY, dualview_deep_copy) { test_dualview_deep_copy(); test_dualview_deep_copy(); } TEST(TEST_CATEGORY, dualview_realloc) { test_dualview_realloc(); } TEST(TEST_CATEGORY, dualview_resize) { test_dualview_resize(); } namespace { /** * * The following tests are a response to * https://github.com/kokkos/kokkos/issues/3850 * and * https://github.com/kokkos/kokkos/pull/3857 * * DualViews were returning incorrect view types and taking * inappropriate actions based on the templated view methods. * * Specifically, template view methods were always returning * a device view if the memory space was UVM and a Kokkos::Device was passed. * Sync/modify methods completely broke down So these tests exist to make sure * that we keep the semantics of UVM DualViews intact. */ // modify if we have other UVM enabled backends #ifdef KOKKOS_ENABLE_CUDA // OR other UVM builds #define UVM_ENABLED_BUILD #endif #ifdef UVM_ENABLED_BUILD template struct UVMSpaceFor; #endif #ifdef KOKKOS_ENABLE_CUDA // specific to CUDA template <> struct UVMSpaceFor { using type = Kokkos::CudaUVMSpace; }; #endif #ifdef UVM_ENABLED_BUILD template <> struct UVMSpaceFor { using type = typename UVMSpaceFor::type; }; #else template struct UVMSpaceFor { using type = typename ExecSpace::memory_space; }; #endif using ExecSpace = Kokkos::DefaultExecutionSpace; using MemSpace = typename UVMSpaceFor::type; using DeviceType = Kokkos::Device; using DualViewType = Kokkos::DualView; using d_device = DeviceType; using h_device = Kokkos::Device< Kokkos::DefaultHostExecutionSpace, typename UVMSpaceFor::type>; TEST(TEST_CATEGORY, dualview_device_correct_kokkos_device) { DualViewType dv("myView", 100); dv.clear_sync_state(); auto v_d = dv.template view(); using vdt = decltype(v_d); using vdt_d = vdt::device_type; using vdt_d_e = vdt_d::execution_space; ASSERT_STREQ(vdt_d_e::name(), Kokkos::DefaultExecutionSpace::name()); } TEST(TEST_CATEGORY, dualview_host_correct_kokkos_device) { DualViewType dv("myView", 100); dv.clear_sync_state(); auto v_h = dv.template view(); using vht = decltype(v_h); using vht_d = vht::device_type; using vht_d_e = vht_d::execution_space; ASSERT_STREQ(vht_d_e::name(), Kokkos::DefaultHostExecutionSpace::name()); } TEST(TEST_CATEGORY, dualview_host_modify_template_device_sync) { DualViewType dv("myView", 100); dv.clear_sync_state(); dv.modify_host(); dv.template sync(); EXPECT_TRUE(!dv.need_sync_device()); EXPECT_TRUE(!dv.need_sync_host()); dv.clear_sync_state(); } TEST(TEST_CATEGORY, dualview_host_modify_template_device_execspace_sync) { DualViewType dv("myView", 100); dv.clear_sync_state(); dv.modify_host(); dv.template sync(); EXPECT_TRUE(!dv.need_sync_device()); EXPECT_TRUE(!dv.need_sync_host()); dv.clear_sync_state(); } TEST(TEST_CATEGORY, dualview_device_modify_template_host_sync) { DualViewType dv("myView", 100); dv.clear_sync_state(); dv.modify_device(); dv.template sync(); EXPECT_TRUE(!dv.need_sync_device()); EXPECT_TRUE(!dv.need_sync_host()); dv.clear_sync_state(); } TEST(TEST_CATEGORY, dualview_device_modify_template_host_execspace_sync) { DualViewType dv("myView", 100); dv.clear_sync_state(); dv.modify_device(); dv.template sync(); EXPECT_TRUE(!dv.need_sync_device()); EXPECT_TRUE(!dv.need_sync_host()); dv.clear_sync_state(); } TEST(TEST_CATEGORY, dualview_template_views_return_correct_executionspace_views) { DualViewType dv("myView", 100); dv.clear_sync_state(); using hvt = decltype(dv.view()); using dvt = decltype(dv.view()); ASSERT_STREQ(Kokkos::DefaultExecutionSpace::name(), dvt::device_type::execution_space::name()); ASSERT_STREQ(Kokkos::DefaultHostExecutionSpace::name(), hvt::device_type::execution_space::name()); } } // anonymous namespace } // namespace Test #endif // KOKKOS_TEST_DUALVIEW_HPP