/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Pavel Elkind (Gothenburg University) ------------------------------------------------------------------------- */ #include "pair_tip4p_cut.h" #include #include #include "atom.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "domain.h" #include "angle.h" #include "bond.h" #include "comm.h" #include "memory.h" #include "error.h" #include "utils.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairTIP4PCut::PairTIP4PCut(LAMMPS *lmp) : Pair(lmp) { single_enable = 0; nmax = 0; hneigh = NULL; newsite = NULL; // TIP4P cannot compute virial as F dot r // due to finding bonded H atoms which are not near O atom no_virial_fdotr_compute = 1; } /* ---------------------------------------------------------------------- */ PairTIP4PCut::~PairTIP4PCut() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } memory->destroy(hneigh); memory->destroy(newsite); } /* ---------------------------------------------------------------------- */ void PairTIP4PCut::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,ecoul; double rsq,r2inv,forcecoul,factor_coul; int *ilist,*jlist,*numneigh,**firstneigh; int key; int n,vlist[6]; int iH1,iH2,jH1,jH2; double cforce; double fO[3],fH[3],fd[3],v[6]; double *x1,*x2,*xH1,*xH2; ecoul = 0.0; ev_init(eflag,vflag); // reallocate hneigh & newsite if necessary // initialize hneigh[0] to -1 on steps when reneighboring occurred // initialize hneigh[2] to 0 every step int nlocal = atom->nlocal; int nall = nlocal + atom->nghost; if (atom->nmax > nmax) { nmax = atom->nmax; memory->destroy(hneigh); memory->create(hneigh,nmax,3,"pair:hneigh"); memory->destroy(newsite); memory->create(newsite,nmax,3,"pair:newsite"); } if (neighbor->ago == 0) for (i = 0; i < nall; i++) hneigh[i][0] = -1; for (i = 0; i < nall; i++) hneigh[i][2] = 0; double **f = atom->f; double **x = atom->x; double *q = atom->q; tagint *tag = atom->tag; int *type = atom->type; double *special_coul = force->special_coul; double qqrd2e = force->qqrd2e; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; if (itype == typeO) { if (hneigh[i][0] < 0) { iH1 = atom->map(tag[i] + 1); iH2 = atom->map(tag[i] + 2); if (iH1 == -1 || iH2 == -1) error->one(FLERR,"TIP4P hydrogen is missing"); if (atom->type[iH1] != typeH || atom->type[iH2] != typeH) error->one(FLERR,"TIP4P hydrogen has incorrect atom type"); // set iH1,iH2 to closest image to O iH1 = domain->closest_image(i,iH1); iH2 = domain->closest_image(i,iH2); compute_newsite(x[i],x[iH1],x[iH2],newsite[i]); hneigh[i][0] = iH1; hneigh[i][1] = iH2; hneigh[i][2] = 1; } else { iH1 = hneigh[i][0]; iH2 = hneigh[i][1]; if (hneigh[i][2] == 0) { hneigh[i][2] = 1; compute_newsite(x[i],x[iH1],x[iH2],newsite[i]); } } x1 = newsite[i]; } else x1 = x[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_coul = special_coul[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; // adjust rsq and delxyz for off-site O charge(s) if necessary // but only if they are within reach if (rsq < cut_coulsqplus) { if (itype == typeO || jtype == typeO) { // if atom J = water O, set x2 = offset charge site // else x2 = x of atom J if (jtype == typeO) { if (hneigh[j][0] < 0) { jH1 = atom->map(tag[j] + 1); jH2 = atom->map(tag[j] + 2); if (jH1 == -1 || jH2 == -1) error->one(FLERR,"TIP4P hydrogen is missing"); if (atom->type[jH1] != typeH || atom->type[jH2] != typeH) error->one(FLERR,"TIP4P hydrogen has incorrect atom type"); // set jH1,jH2 to closest image to O jH1 = domain->closest_image(j,jH1); jH2 = domain->closest_image(j,jH2); compute_newsite(x[j],x[jH1],x[jH2],newsite[j]); hneigh[j][0] = jH1; hneigh[j][1] = jH2; hneigh[j][2] = 1; } else { jH1 = hneigh[j][0]; jH2 = hneigh[j][1]; if (hneigh[j][2] == 0) { hneigh[j][2] = 1; compute_newsite(x[j],x[jH1],x[jH2],newsite[j]); } } x2 = newsite[j]; } else x2 = x[j]; delx = x1[0] - x2[0]; dely = x1[1] - x2[1]; delz = x1[2] - x2[2]; rsq = delx*delx + dely*dely + delz*delz; } // Coulombic interaction based on modified rsq if (rsq < cut_coulsq) { r2inv = 1.0 / rsq; forcecoul = qqrd2e * qtmp * q[j] * sqrt(r2inv); cforce = factor_coul * forcecoul * r2inv; // if i,j are not O atoms, force is applied directly; // if i or j are O atoms, force is on fictitious atom & partitioned // force partitioning due to Feenstra, J Comp Chem, 20, 786 (1999) // f_f = fictitious force, fO = f_f (1 - 2 alpha), fH = alpha f_f // preserves total force and torque on water molecule // virial = sum(r x F) where each water's atoms are near xi and xj // vlist stores 2,4,6 atoms whose forces contribute to virial n = 0; key = 0; if (itype != typeO) { f[i][0] += delx * cforce; f[i][1] += dely * cforce; f[i][2] += delz * cforce; if (vflag) { v[0] = x[i][0] * delx * cforce; v[1] = x[i][1] * dely * cforce; v[2] = x[i][2] * delz * cforce; v[3] = x[i][0] * dely * cforce; v[4] = x[i][0] * delz * cforce; v[5] = x[i][1] * delz * cforce; } vlist[n++] = i; } else { key++; fd[0] = delx*cforce; fd[1] = dely*cforce; fd[2] = delz*cforce; fO[0] = fd[0]*(1.0 - alpha); fO[1] = fd[1]*(1.0 - alpha); fO[2] = fd[2]*(1.0 - alpha); fH[0] = 0.5 * alpha * fd[0]; fH[1] = 0.5 * alpha * fd[1]; fH[2] = 0.5 * alpha * fd[2]; f[i][0] += fO[0]; f[i][1] += fO[1]; f[i][2] += fO[2]; f[iH1][0] += fH[0]; f[iH1][1] += fH[1]; f[iH1][2] += fH[2]; f[iH2][0] += fH[0]; f[iH2][1] += fH[1]; f[iH2][2] += fH[2]; if(vflag) { xH1 = x[iH1]; xH2 = x[iH2]; v[0] = x[i][0]*fO[0] + xH1[0]*fH[0] + xH2[0]*fH[0]; v[1] = x[i][1]*fO[1] + xH1[1]*fH[1] + xH2[1]*fH[1]; v[2] = x[i][2]*fO[2] + xH1[2]*fH[2] + xH2[2]*fH[2]; v[3] = x[i][0]*fO[1] + xH1[0]*fH[1] + xH2[0]*fH[1]; v[4] = x[i][0]*fO[2] + xH1[0]*fH[2] + xH2[0]*fH[2]; v[5] = x[i][1]*fO[2] + xH1[1]*fH[2] + xH2[1]*fH[2]; } vlist[n++] = i; vlist[n++] = iH1; vlist[n++] = iH2; } if (jtype != typeO) { f[j][0] -= delx * cforce; f[j][1] -= dely * cforce; f[j][2] -= delz * cforce; if (vflag) { v[0] -= x[j][0] * delx * cforce; v[1] -= x[j][1] * dely * cforce; v[2] -= x[j][2] * delz * cforce; v[3] -= x[j][0] * dely * cforce; v[4] -= x[j][0] * delz * cforce; v[5] -= x[j][1] * delz * cforce; } vlist[n++] = j; } else { key += 2; fd[0] = -delx*cforce; fd[1] = -dely*cforce; fd[2] = -delz*cforce; fO[0] = fd[0]*(1 - alpha); fO[1] = fd[1]*(1 - alpha); fO[2] = fd[2]*(1 - alpha); fH[0] = 0.5 * alpha * fd[0]; fH[1] = 0.5 * alpha * fd[1]; fH[2] = 0.5 * alpha * fd[2]; f[j][0] += fO[0]; f[j][1] += fO[1]; f[j][2] += fO[2]; f[jH1][0] += fH[0]; f[jH1][1] += fH[1]; f[jH1][2] += fH[2]; f[jH2][0] += fH[0]; f[jH2][1] += fH[1]; f[jH2][2] += fH[2]; if (vflag) { xH1 = x[jH1]; xH2 = x[jH2]; v[0] += x[j][0]*fO[0] + xH1[0]*fH[0] + xH2[0]*fH[0]; v[1] += x[j][1]*fO[1] + xH1[1]*fH[1] + xH2[1]*fH[1]; v[2] += x[j][2]*fO[2] + xH1[2]*fH[2] + xH2[2]*fH[2]; v[3] += x[j][0]*fO[1] + xH1[0]*fH[1] + xH2[0]*fH[1]; v[4] += x[j][0]*fO[2] + xH1[0]*fH[2] + xH2[0]*fH[2]; v[5] += x[j][1]*fO[2] + xH1[1]*fH[2] + xH2[1]*fH[2]; } vlist[n++] = j; vlist[n++] = jH1; vlist[n++] = jH2; } if (eflag) { ecoul = qqrd2e * qtmp * q[j] * sqrt(r2inv); ecoul *= factor_coul; } else ecoul = 0.0; if (evflag) ev_tally_tip4p(key,vlist,v,ecoul,alpha); } } } } } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairTIP4PCut::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairTIP4PCut::settings(int narg, char **arg) { if (narg != 6) error->all(FLERR,"Illegal pair_style command"); typeO = force->inumeric(FLERR,arg[0]); typeH = force->inumeric(FLERR,arg[1]); typeB = force->inumeric(FLERR,arg[2]); typeA = force->inumeric(FLERR,arg[3]); qdist = force->numeric(FLERR,arg[4]); cut_coul = force->numeric(FLERR,arg[5]); cut_coulsq = cut_coul * cut_coul; cut_coulsqplus = (cut_coul + 2.0*qdist) * (cut_coul + 2.0*qdist); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairTIP4PCut::coeff(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi); force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairTIP4PCut::init_style() { if (atom->tag_enable == 0) error->all(FLERR,"Pair style tip4p/cut requires atom IDs"); if (!force->newton_pair) error->all(FLERR, "Pair style tip4p/cut requires newton pair on"); if (!atom->q_flag) error->all(FLERR, "Pair style tip4p/cut requires atom attribute q"); if (force->bond == NULL) error->all(FLERR,"Must use a bond style with TIP4P potential"); if (force->angle == NULL) error->all(FLERR,"Must use an angle style with TIP4P potential"); neighbor->request(this,instance_me); // set alpha parameter double theta = force->angle->equilibrium_angle(typeA); double blen = force->bond->equilibrium_distance(typeB); alpha = qdist / (cos(0.5*theta) * blen); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairTIP4PCut::init_one(int /*i*/, int /*j*/) { // include TIP4P qdist in full cutoff, qdist = 0.0 if not TIP4P return cut_coul+2.0*qdist; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairTIP4PCut::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) fwrite(&setflag[i][j],sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairTIP4PCut::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,NULL,error); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairTIP4PCut::write_restart_settings(FILE *fp) { fwrite(&typeO,sizeof(int),1,fp); fwrite(&typeH,sizeof(int),1,fp); fwrite(&typeB,sizeof(int),1,fp); fwrite(&typeA,sizeof(int),1,fp); fwrite(&qdist,sizeof(double),1,fp); fwrite(&cut_coul,sizeof(double),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairTIP4PCut::read_restart_settings(FILE *fp) { if (comm->me == 0) { utils::sfread(FLERR,&typeO,sizeof(int),1,fp,NULL,error); utils::sfread(FLERR,&typeH,sizeof(int),1,fp,NULL,error); utils::sfread(FLERR,&typeB,sizeof(int),1,fp,NULL,error); utils::sfread(FLERR,&typeA,sizeof(int),1,fp,NULL,error); utils::sfread(FLERR,&qdist,sizeof(double),1,fp,NULL,error); utils::sfread(FLERR,&cut_coul,sizeof(double),1,fp,NULL,error); } MPI_Bcast(&typeO,1,MPI_INT,0,world); MPI_Bcast(&typeH,1,MPI_INT,0,world); MPI_Bcast(&typeB,1,MPI_INT,0,world); MPI_Bcast(&typeA,1,MPI_INT,0,world); MPI_Bcast(&qdist,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_coul,1,MPI_DOUBLE,0,world); cut_coulsq = cut_coul * cut_coul; cut_coulsqplus = (cut_coul + 2.0*qdist) * (cut_coul + 2.0*qdist); } /* ---------------------------------------------------------------------- compute position xM of fictitious charge site for O atom and 2 H atoms return it as xM ------------------------------------------------------------------------- */ void PairTIP4PCut::compute_newsite(double *xO, double *xH1, double *xH2, double *xM) { double delx1 = xH1[0] - xO[0]; double dely1 = xH1[1] - xO[1]; double delz1 = xH1[2] - xO[2]; double delx2 = xH2[0] - xO[0]; double dely2 = xH2[1] - xO[1]; double delz2 = xH2[2] - xO[2]; xM[0] = xO[0] + alpha * 0.5 * (delx1 + delx2); xM[1] = xO[1] + alpha * 0.5 * (dely1 + dely2); xM[2] = xO[2] + alpha * 0.5 * (delz1 + delz2); } /* ---------------------------------------------------------------------- memory usage of hneigh ------------------------------------------------------------------------- */ double PairTIP4PCut::memory_usage() { double bytes = maxeatom * sizeof(double); bytes += maxvatom*6 * sizeof(double); bytes += 2 * nmax * sizeof(double); return bytes; }