/*************************************************************************** mdpd.cpp ------------------- Trung Dac Nguyen (U Chicago) Class for acceleration of the mdpd pair style. __________________________________________________________________________ This file is part of the LAMMPS Accelerator Library (LAMMPS_AL) __________________________________________________________________________ begin : September 2023 email : ndactrung@gmail.com ***************************************************************************/ #if defined(USE_OPENCL) #include "mdpd_cl.h" #elif defined(USE_CUDART) const char *mdpd=0; #else #include "mdpd_cubin.h" #endif #include "lal_mdpd.h" #include namespace LAMMPS_AL { #define MDPDT MDPD extern Device device; template MDPDT::MDPD() : BaseDPD(), _allocated(false) { } template MDPDT::~MDPD() { clear(); } template int MDPDT::bytes_per_atom(const int max_nbors) const { return this->bytes_per_atom_atomic(max_nbors); } template int MDPDT::init(const int ntypes, double **host_cutsq, double **host_A_att, double **host_B_rep, double **host_gamma, double **host_sigma, double **host_cut, double **host_cut_r, double *host_special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, const double gpu_split, FILE *_screen) { const int max_shared_types=this->device->max_shared_types(); int onetype=0; #ifdef USE_OPENCL if (maxspecial==0) for (int i=1; i0) { if (onetype>0) onetype=-1; else if (onetype==0) onetype=i*max_shared_types+j; } if (onetype<0) onetype=0; #endif int success; int extra_fields = 4; // round up to accomodate quadruples of numtyp values // rho success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size, gpu_split,_screen,mdpd,"k_mdpd",onetype,extra_fields); if (success!=0) return success; // If atom type constants fit in shared memory use fast kernel int lj_types=ntypes; shared_types=false; if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) { lj_types=max_shared_types; shared_types=true; } _lj_types=lj_types; // Allocate a host write buffer for data initialization UCL_H_Vec host_write(lj_types*lj_types*32,*(this->ucl_device), UCL_WRITE_ONLY); for (int i=0; iucl_device),UCL_READ_ONLY); this->atom->type_pack4(ntypes,lj_types,coeff,host_write,host_A_att,host_B_rep, host_gamma,host_sigma); coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY); this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_cut,host_cut_r, host_cutsq); UCL_H_Vec host_rsq(lj_types*lj_types,*(this->ucl_device), UCL_WRITE_ONLY); cutsq.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY); this->atom->type_pack1(ntypes,lj_types,cutsq,host_rsq,host_cutsq); double special_sqrt[4]; special_sqrt[0] = sqrt(host_special_lj[0]); special_sqrt[1] = sqrt(host_special_lj[1]); special_sqrt[2] = sqrt(host_special_lj[2]); special_sqrt[3] = sqrt(host_special_lj[3]); UCL_H_Vec dview; sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY); dview.view(host_special_lj,4,*(this->ucl_device)); ucl_copy(sp_lj,dview,false); sp_sqrt.alloc(4,*(this->ucl_device),UCL_READ_ONLY); dview.view(special_sqrt,4,*(this->ucl_device)); ucl_copy(sp_sqrt,dview,false); // allocate per-atom array Q int ef_nall=nall; if (ef_nall==0) ef_nall=2000; _allocated=true; this->_max_bytes=coeff.row_bytes()+coeff2.row_bytes()+cutsq.row_bytes()+ sp_lj.row_bytes()+sp_sqrt.row_bytes(); return 0; } template void MDPDT::clear() { if (!_allocated) return; _allocated=false; coeff.clear(); coeff2.clear(); cutsq.clear(); sp_lj.clear(); sp_sqrt.clear(); this->clear_atomic(); } template double MDPDT::host_memory_usage() const { return this->host_memory_usage_atomic()+sizeof(MDPD); } // --------------------------------------------------------------------------- // Calculate energies, forces, and torques // --------------------------------------------------------------------------- template int MDPDT::loop(const int eflag, const int vflag) { int nall = this->atom->nall(); // signal that we need to transfer extra data from the host this->atom->extra_data_unavail(); numtyp4 *pextra=reinterpret_cast(&(this->atom->extra[0])); int n = 0; int nstride = 1; for (int i = 0; i < nall; i++) { int idx = n+i*nstride; numtyp4 v; v.x = mdpd_rho[i]; v.y = 0; v.z = 0; v.w = 0; pextra[idx] = v; } this->atom->add_extra_data(); // Compute the block size and grid size to keep all cores busy const int BX=this->block_size(); int GX=static_cast(ceil(static_cast(this->ans->inum())/ (BX/this->_threads_per_atom))); int ainum=this->ans->inum(); int nbor_pitch=this->nbor->nbor_pitch(); this->time_pair.start(); if (shared_types) { this->k_pair_sel->set_size(GX,BX); this->k_pair_sel->run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(), &this->ans->force, &this->ans->engv, &eflag, &vflag, &ainum, &nbor_pitch, &this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed, &this->_timestep, &this->_threads_per_atom); } else { this->k_pair.set_size(GX,BX); this->k_pair.run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &_lj_types, &sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(), &this->ans->force, &this->ans->engv, &eflag, &vflag, &ainum, &nbor_pitch, &this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed, &this->_timestep, &this->_threads_per_atom); } this->time_pair.stop(); return GX; } // --------------------------------------------------------------------------- // Get the extra data pointers from host // --------------------------------------------------------------------------- template void MDPDT::get_extra_data(double *host_rho) { mdpd_rho = host_rho; } template class MDPD; }