/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define _type2frho MY_AP(coeff1) #define _type2rhor MY_AP(coeff2) #define _type2z2r MY_AP(coeff3) #define _rdr MY_AP(rdr) #define _rdrho MY_AP(rdrho) #define _nr MY_AP(nr) #define _nrho MY_AP(nrho) #define _nfrho MY_AP(nfrho) #define _nrhor MY_AP(nrhor) #define _nz2r MY_AP(nz2r) #define _frho_spline MY_AP(frho_spline) #define _rhor_spline MY_AP(rhor_spline) #define _z2r_spline MY_AP(z2r_spline) #define _rho MY_AP(rho) #define _fp MY_AP(fp) __device__ __constant__ F_CFLOAT MY_AP(rdr); __device__ __constant__ F_CFLOAT MY_AP(rdrho); __device__ __constant__ int MY_AP(nr); __device__ __constant__ int MY_AP(nrho); __device__ __constant__ int MY_AP(nfrho); __device__ __constant__ int MY_AP(nrhor); __device__ __constant__ int MY_AP(nz2r); __device__ __constant__ F_CFLOAT* MY_AP(frho_spline); __device__ __constant__ F_CFLOAT* MY_AP(rhor_spline); __device__ __constant__ F_CFLOAT* MY_AP(z2r_spline); __device__ __constant__ F_CFLOAT* MY_AP(rho); __device__ __constant__ F_CFLOAT* MY_AP(fp); #define _rhor_spline_tex MY_AP(rhor_spline_tex) #if F_PRECISION == 1 texture _rhor_spline_tex; #else texture _rhor_spline_tex; #endif #define _z2r_spline_tex MY_AP(z2r_spline_tex) #if F_PRECISION == 1 texture _z2r_spline_tex; #else texture _z2r_spline_tex; #endif #include "pair_eam_cuda_cu.h" #include "pair_eam_cuda_kernel_nc.cu" #include int eam_buff_offset; int rhor_spline_size; void* rhor_spline_pointer; int z2r_spline_size; void* z2r_spline_pointer; inline void BindEAMTextures(cuda_shared_data* sdata) { _rhor_spline_tex.normalized = false; // access with normalized texture coordinates _rhor_spline_tex.filterMode = cudaFilterModePoint; // Point mode, so no _rhor_spline_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates const textureReference* rhor_spline_texture_ptr = &MY_AP(rhor_spline_tex); #if F_PRECISION == 1 cudaChannelFormatDesc channelDescRhor = cudaCreateChannelDesc(); cudaBindTexture(0, rhor_spline_texture_ptr, rhor_spline_pointer, &channelDescRhor, rhor_spline_size); #else cudaChannelFormatDesc channelDescRhor = cudaCreateChannelDesc(); cudaBindTexture(0, rhor_spline_texture_ptr, rhor_spline_pointer, &channelDescRhor, rhor_spline_size); #endif _z2r_spline_tex.normalized = false; // access with normalized texture coordinates _z2r_spline_tex.filterMode = cudaFilterModePoint; // Point mode, so no _z2r_spline_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates const textureReference* z2r_spline_texture_ptr = &MY_AP(z2r_spline_tex); #if F_PRECISION == 1 cudaChannelFormatDesc channelDescZ2r = cudaCreateChannelDesc(); cudaBindTexture(0, z2r_spline_texture_ptr, z2r_spline_pointer, &channelDescZ2r, z2r_spline_size); #else cudaChannelFormatDesc channelDescZ2r = cudaCreateChannelDesc(); cudaBindTexture(0, z2r_spline_texture_ptr, z2r_spline_pointer, &channelDescZ2r, z2r_spline_size); #endif } void Cuda_PairEAMCuda_UpdateBuffer(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist) { CUT_CHECK_ERROR("Cuda_PairEAMCuda: before updateBuffer failed"); int3 layout = getgrid(sneighlist->inum, 7 * sizeof(F_CFLOAT)); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); int size = (unsigned)(layout.y * layout.x) * 7 * sizeof(F_CFLOAT); if(sdata->buffersize < size) { MYDBG(printf("Cuda_PairEAMCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);) if(sdata->buffer != NULL) cudaFree(sdata->buffer); cudaMalloc((void**)&sdata->buffer, size); sdata->buffersize = size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);) } cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*)); CUT_CHECK_ERROR("Cuda_PairEAMCuda: updateBuffer failed"); } void Cuda_PairEAMCuda_UpdateNeighbor(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist) { cudaMemcpyToSymbol(MY_AP(neighbor_maxlocal) , & sneighlist->firstneigh.dim[0] , sizeof(unsigned)); cudaMemcpyToSymbol(MY_AP(firstneigh), & sneighlist->firstneigh.dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(ilist) , & sneighlist->ilist .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(inum) , & sneighlist->inum , sizeof(int)); cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int)); cudaMemcpyToSymbol(MY_AP(numneigh) , & sneighlist->numneigh .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(neighbors) , & sneighlist->neighbors .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(maxneighbors) , & sneighlist->maxneighbors , sizeof(int)); } void Cuda_PairEAMCuda_UpdateNmax(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist) { CUT_CHECK_ERROR("Cuda_PairEAMCuda: before updateNmax failed"); cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(x_type) , & sdata->atom.x_type .dev_data, sizeof(X_CFLOAT4*)); cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*)); cudaMemcpyToSymbol(MY_AP(eatom) , & sdata->atom.eatom .dev_data, sizeof(ENERGY_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(vatom) , & sdata->atom.vatom .dev_data, sizeof(ENERGY_CFLOAT*)); CUT_CHECK_ERROR("Cuda_PairEAMCuda: updateNmax failed"); } void Cuda_PairEAMCuda_Init(cuda_shared_data* sdata, double rdr, double rdrho, int nfrho, int nrhor, int nr, int nrho, int nz2r, void* frho_spline, void* rhor_spline, void* z2r_spline, void* rho, void* fp, int* type2frho, int** type2z2r, int** type2rhor) { // !! LAMMPS indexes atom types starting with 1 !! unsigned cuda_ntypes = sdata->atom.ntypes + 1; if(cuda_ntypes * cuda_ntypes > CUDA_MAX_TYPES2) printf("# CUDA: Cuda_PairEAMCuda_Init: you need %u types. this is more than %u " "(assumed at compile time). re-compile with -DCUDA_MAX_TYPES_PLUS_ONE=99 " "or ajust this in cuda_common.h\n", cuda_ntypes, CUDA_MAX_TYPES2); unsigned nI = sizeof(F_CFLOAT) * cuda_ntypes * cuda_ntypes; X_CFLOAT cutsq_global; cutsq_global = (X_CFLOAT)(sdata->pair.cut_global); cudaMemcpyToSymbol(MY_AP(cutsq_global) , &cutsq_global , sizeof(X_CFLOAT)); F_CFLOAT* coeff_buf = new F_CFLOAT[cuda_ntypes * cuda_ntypes]; for(int i = 0; i < cuda_ntypes; i++) coeff_buf[i] = type2frho[i]; cudaMemcpyToSymbol(MY_AP(coeff1) , coeff_buf , cuda_ntypes * sizeof(F_CFLOAT)); for(int i = 0; i < cuda_ntypes * cuda_ntypes; i++) coeff_buf[i] = (&type2rhor[0][0])[i]; cudaMemcpyToSymbol(MY_AP(coeff2) , coeff_buf , nI); for(int i = 0; i < cuda_ntypes * cuda_ntypes; i++) coeff_buf[i] = (&type2z2r[0][0])[i]; cudaMemcpyToSymbol(MY_AP(coeff3) , coeff_buf , nI); delete [] coeff_buf; X_CFLOAT box_size[3] = { sdata->domain.subhi[0] - sdata->domain.sublo[0], sdata->domain.subhi[1] - sdata->domain.sublo[1], sdata->domain.subhi[2] - sdata->domain.sublo[2] }; F_CFLOAT rdr_F = rdr; F_CFLOAT rdrho_F = rdrho; cudaMemcpyToSymbol(MY_AP(box_size) , box_size , sizeof(X_CFLOAT) * 3); cudaMemcpyToSymbol(MY_AP(cuda_ntypes), & cuda_ntypes , sizeof(unsigned)); cudaMemcpyToSymbol(MY_AP(virial) , &sdata->pair.virial.dev_data , sizeof(ENERGY_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(eng_vdwl) , &sdata->pair.eng_vdwl.dev_data , sizeof(ENERGY_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(periodicity), sdata->domain.periodicity, sizeof(int) * 3); cudaMemcpyToSymbol(MY_AP(collect_forces_later), &sdata->pair.collect_forces_later , sizeof(int)); cudaMemcpyToSymbol(MY_AP(rdr), &rdr_F, sizeof(F_CFLOAT)); cudaMemcpyToSymbol(MY_AP(rdrho), &rdrho_F, sizeof(F_CFLOAT)); cudaMemcpyToSymbol(MY_AP(nr), &nr, sizeof(int)); cudaMemcpyToSymbol(MY_AP(nrho), &nrho, sizeof(int)); cudaMemcpyToSymbol(MY_AP(nfrho), &nfrho, sizeof(int)); cudaMemcpyToSymbol(MY_AP(nrhor), &nrhor, sizeof(int)); cudaMemcpyToSymbol(MY_AP(rho), &rho, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(fp), &fp, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(frho_spline), &frho_spline, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(rhor_spline), &rhor_spline, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(z2r_spline), &z2r_spline, sizeof(F_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(nrhor), &nrhor, sizeof(int)); rhor_spline_size = nrhor * (nr + 1) * EAM_COEFF_LENGTH * sizeof(F_CFLOAT); z2r_spline_size = nz2r * (nr + 1) * EAM_COEFF_LENGTH * sizeof(F_CFLOAT); rhor_spline_pointer = rhor_spline; z2r_spline_pointer = z2r_spline; CUT_CHECK_ERROR("Cuda_PairEAMCuda: init failed"); } void Cuda_PairEAM1Cuda(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist, int eflag, int vflag, int eflag_atom, int vflag_atom) { if(sdata->atom.update_nmax) Cuda_PairEAMCuda_UpdateNmax(sdata, sneighlist); if(sdata->atom.update_neigh) Cuda_PairEAMCuda_UpdateNeighbor(sdata, sneighlist); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int)); if(sdata->buffer_new) Cuda_PairEAMCuda_UpdateBuffer(sdata, sneighlist); cudaMemcpyToSymbol(MY_AP(eatom) , & sdata->atom.eatom .dev_data, sizeof(ENERGY_CFLOAT*)); cudaMemcpyToSymbol(MY_AP(vatom) , & sdata->atom.vatom .dev_data, sizeof(ENERGY_CFLOAT*)); int sharedperproc = 0; if(eflag || eflag_atom) sharedperproc = 1; if(vflag || vflag_atom) sharedperproc = 7; int3 layout = getgrid(sneighlist->inum, sharedperproc * sizeof(ENERGY_CFLOAT)); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); eam_buff_offset = grid.x * grid.y; BindXTypeTexture(sdata); BindEAMTextures(sdata); // initialize only on first call MYDBG(printf("# CUDA: Cuda_PairEAMCuda: kernel start eflag: %i vflag: %i\n", eflag, vflag);) CUT_CHECK_ERROR("Cuda_PairEAMCuda: pre pair Kernel 1 problems before kernel invocation"); PairEAMCuda_Kernel1 <<< grid, threads, sharedperproc* sizeof(ENERGY_CFLOAT)*threads.x>>> (eflag, vflag, eflag_atom, vflag_atom); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_PairEAMCuda: pair Kernel 1 execution failed"); MYDBG(printf("# CUDA: Cuda_PairEAMCoulLongCuda: kernel done\n");) } void Cuda_PairEAM2Cuda(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist, int eflag, int vflag, int eflag_atom, int vflag_atom) { int sharedperproc = 0; if(eflag || eflag_atom) sharedperproc = 1; if(vflag || vflag_atom) sharedperproc = 7; int3 layout = getgrid(sneighlist->inum, sharedperproc * sizeof(ENERGY_CFLOAT)); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); BindXTypeTexture(sdata); BindEAMTextures(sdata); // initialize only on first call // initialize only on first call sdata->pair.lastgridsize = grid.x * grid.y; sdata->pair.n_energy_virial = sharedperproc; MYDBG(printf("# CUDA: Cuda_PairEAMCuda: kernel start eflag: %i vflag: %i\n", eflag, vflag);) CUT_CHECK_ERROR("Cuda_PairEAMCuda: pre pair Kernel 2 problems before kernel invocation"); PairEAMCuda_Kernel2 <<< grid, threads, sharedperproc* sizeof(ENERGY_CFLOAT)*threads.x>>> (eflag, vflag, eflag_atom, vflag_atom); CUT_CHECK_ERROR("Cuda_PairEAMCuda: pair Kernel 2 start failed"); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_PairEAMCuda: pair Kernel 2 execution failed"); if(eflag || vflag) { int n = grid.x * grid.y; grid.x = sharedperproc; grid.y = 1; threads.x = 256; MY_AP(PairVirialCompute_reduce) <<< grid, threads, threads.x* sizeof(ENERGY_CFLOAT)*sharedperproc>>>(n); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_PairEAMCuda: virial compute Kernel execution failed"); } MYDBG(printf("# CUDA: Cuda_PairEAMCoulLongCuda: kernel done\n");) } void Cuda_PairEAMCuda_PackComm(cuda_shared_data* sdata, int n, int iswap, void* buf_send) { int3 layout = getgrid(n, 0); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); F_CFLOAT* buf = (F_CFLOAT*)(& ((double*)sdata->buffer)[eam_buff_offset]); PairEAMCuda_PackComm_Kernel <<< grid, threads, 0>>> ((int*) sdata->comm.sendlist.dev_data, n , sdata->comm.maxlistlength, iswap, buf); cudaThreadSynchronize(); cudaMemcpy(buf_send, buf, n* sizeof(F_CFLOAT), cudaMemcpyDeviceToHost); cudaThreadSynchronize(); } void Cuda_PairEAMCuda_UnpackComm(cuda_shared_data* sdata, int n, int first, void* buf_recv, void* fp) { F_CFLOAT* fp_first = &(((F_CFLOAT*) fp)[first]); cudaMemcpy(fp_first, buf_recv, n * sizeof(F_CFLOAT), cudaMemcpyHostToDevice); } #undef _type2frho #undef _type2rhor #undef _type2z2r /* ---------------------------------------------------------------------- tally eng_vdwl and virial into global and per-atom accumulators need i < nlocal test since called by bond_quartic and dihedral_charmm ------------------------------------------------------------------------- */