// clang-format off /* ---------------------------------------------------------------------- * * *** Smooth Mach Dynamics *** * * This file is part of the MACHDYN package for LAMMPS. * Copyright (2014) Georg C. Ganzenmueller, georg.ganzenmueller@emi.fhg.de * Fraunhofer Ernst-Mach Institute for High-Speed Dynamics, EMI, * Eckerstrasse 4, D-79104 Freiburg i.Br, Germany. * * ----------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Parks (SNL) ------------------------------------------------------------------------- */ #include "pair_smd_hertz.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include "neighbor.h" #include #include using namespace LAMMPS_NS; #define SQRT2 1.414213562e0 /* ---------------------------------------------------------------------- */ PairHertz::PairHertz(LAMMPS *lmp) : Pair(lmp) { onerad_dynamic = onerad_frozen = maxrad_dynamic = maxrad_frozen = nullptr; bulkmodulus = nullptr; kn = nullptr; scale = 1.0; } /* ---------------------------------------------------------------------- */ PairHertz::~PairHertz() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(bulkmodulus); memory->destroy(kn); delete[] onerad_dynamic; delete[] onerad_frozen; delete[] maxrad_dynamic; delete[] maxrad_frozen; } } /* ---------------------------------------------------------------------- */ void PairHertz::compute(int eflag, int vflag) { int i, j, ii, jj, inum, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz; double rsq, r, evdwl, fpair; int *ilist, *jlist, *numneigh, **firstneigh; double rcut, r_geom, delta, ri, rj, dt_crit; double *rmass = atom->rmass; evdwl = 0.0; ev_init(eflag, vflag); double **f = atom->f; double **x = atom->x; double **x0 = atom->x0; int *type = atom->type; int nlocal = atom->nlocal; double *radius = atom->contact_radius; double *sph_radius = atom->radius; double rcutSq; double delx0, dely0, delz0, rSq0, sphCut; int newton_pair = force->newton_pair; int periodic = (domain->xperiodic || domain->yperiodic || domain->zperiodic); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; stable_time_increment = 1.0e22; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; ri = scale * radius[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; rj = scale * radius[j]; rcut = ri + rj; rcutSq = rcut * rcut; if (rsq < rcutSq) { /* * self contact option: * if pair of particles was initially close enough to interact via a bulk continuum mechanism (e.g. SPH), exclude pair from contact forces. * this approach should work well if no updates of the reference configuration are performed. */ if (itype == jtype) { delx0 = x0[j][0] - x0[i][0]; dely0 = x0[j][1] - x0[i][1]; delz0 = x0[j][2] - x0[i][2]; if (periodic) { domain->minimum_image(delx0, dely0, delz0); } rSq0 = delx0 * delx0 + dely0 * dely0 + delz0 * delz0; // initial distance sphCut = sph_radius[i] + sph_radius[j]; if (rSq0 < sphCut * sphCut) { rcut = 0.5 * rcut; rcutSq = rcut * rcut; if (rsq > rcutSq) { continue; } } } r = sqrt(rsq); //printf("hertz interaction, r=%f, cut=%f, h=%f\n", r, rcut, sqrt(rSq0)); // Hertzian short-range forces delta = rcut - r; // overlap distance r_geom = ri * rj / rcut; //assuming poisson ratio = 1/4 for 3d fpair = 1.066666667e0 * bulkmodulus[itype][jtype] * delta * sqrt(delta * r_geom); // units: N evdwl = fpair * 0.4e0 * delta; // GCG 25 April: this expression conserves total energy dt_crit = 3.14 * sqrt(0.5 * (rmass[i] + rmass[j]) / (fpair / delta)); stable_time_increment = MIN(stable_time_increment, dt_crit); if (r > 2.0e-16) { fpair /= r; // divide by r and multiply with non-normalized distance vector } else { fpair = 0.0; } /* * contact viscosity -- needs to be done, see GRANULAR package for normal & shear damping * for now: no damping and thus no viscous energy deltaE */ if (evflag) { ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz); } f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx * fpair; f[j][1] -= dely * fpair; f[j][2] -= delz * fpair; } } } } // double stable_time_increment_all = 0.0; // MPI_Allreduce(&stable_time_increment, &stable_time_increment_all, 1, MPI_DOUBLE, MPI_MIN, world); // if (comm->me == 0) { // printf("stable time step for pair smd/hertz is %f\n", stable_time_increment_all); // } } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairHertz::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag, n + 1, n + 1, "pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(bulkmodulus, n + 1, n + 1, "pair:kspring"); memory->create(kn, n + 1, n + 1, "pair:kn"); memory->create(cutsq, n + 1, n + 1, "pair:cutsq"); // always needs to be allocated, even with granular neighborlist onerad_dynamic = new double[n + 1]; onerad_frozen = new double[n + 1]; maxrad_dynamic = new double[n + 1]; maxrad_frozen = new double[n + 1]; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairHertz::settings(int narg, char **arg) { if (narg != 1) error->all(FLERR, "Illegal number of args for pair_style hertz"); scale = utils::numeric(FLERR, arg[0],false,lmp); if (comm->me == 0) { printf("\n>>========>>========>>========>>========>>========>>========>>========>>========\n"); printf("SMD/HERTZ CONTACT SETTINGS:\n"); printf("... effective contact radius is scaled by %f\n", scale); printf(">>========>>========>>========>>========>>========>>========>>========>>========\n"); } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairHertz::coeff(int narg, char **arg) { if (narg != 3) error->all(FLERR, "Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo, ihi, jlo, jhi; utils::bounds(FLERR,arg[0], 1, atom->ntypes, ilo, ihi, error); utils::bounds(FLERR,arg[1], 1, atom->ntypes, jlo, jhi, error); double bulkmodulus_one = utils::numeric(FLERR,arg[2],false,lmp); // set short-range force constant double kn_one = 0.0; if (domain->dimension == 3) { kn_one = (16. / 15.) * bulkmodulus_one; //assuming poisson ratio = 1/4 for 3d } else { kn_one = 0.251856195 * (2. / 3.) * bulkmodulus_one; //assuming poisson ratio = 1/3 for 2d } int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo, i); j <= jhi; j++) { bulkmodulus[i][j] = bulkmodulus_one; kn[i][j] = kn_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairHertz::init_one(int i, int j) { if (!allocated) allocate(); if (setflag[i][j] == 0) error->all(FLERR, "All pair coeffs are not set"); bulkmodulus[j][i] = bulkmodulus[i][j]; kn[j][i] = kn[i][j]; // cutoff = sum of max I,J radii for // dynamic/dynamic & dynamic/frozen interactions, but not frozen/frozen double cutoff = maxrad_dynamic[i] + maxrad_dynamic[j]; cutoff = MAX(cutoff, maxrad_frozen[i] + maxrad_dynamic[j]); cutoff = MAX(cutoff, maxrad_dynamic[i] + maxrad_frozen[j]); if (comm->me == 0) { printf("cutoff for pair smd/hertz = %f\n", cutoff); } return cutoff; } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairHertz::init_style() { int i; // error checks if (!atom->contact_radius_flag) error->all(FLERR, "Pair style smd/hertz requires atom style with contact_radius"); neighbor->add_request(this, NeighConst::REQ_SIZE); // set maxrad_dynamic and maxrad_frozen for each type // include future Fix pour particles as dynamic for (i = 1; i <= atom->ntypes; i++) onerad_dynamic[i] = onerad_frozen[i] = 0.0; double *radius = atom->radius; int *type = atom->type; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { onerad_dynamic[type[i]] = MAX(onerad_dynamic[type[i]], radius[i]); } MPI_Allreduce(&onerad_dynamic[1], &maxrad_dynamic[1], atom->ntypes, MPI_DOUBLE, MPI_MAX, world); MPI_Allreduce(&onerad_frozen[1], &maxrad_frozen[1], atom->ntypes, MPI_DOUBLE, MPI_MAX, world); } /* ---------------------------------------------------------------------- neighbor callback to inform pair style of neighbor list to use optional granular history list ------------------------------------------------------------------------- */ void PairHertz::init_list(int id, NeighList *ptr) { if (id == 0) list = ptr; } /* ---------------------------------------------------------------------- memory usage of local atom-based arrays ------------------------------------------------------------------------- */ double PairHertz::memory_usage() { return 0.0; } void *PairHertz::extract(const char *str, int &/*i*/) { //printf("in PairTriSurf::extract\n"); if (strcmp(str, "smd/hertz/stable_time_increment_ptr") == 0) { return (void *) &stable_time_increment; } return nullptr; }