// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "angle.h" #include "atom.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "suffix.h" #include "atom_masks.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define FOURTH 0.25 /* ---------------------------------------------------------------------- */ Angle::Angle(LAMMPS *lmp) : Pointers(lmp) { energy = 0.0; virial[0] = virial[1] = virial[2] = virial[3] = virial[4] = virial[5] = 0.0; writedata = 1; allocated = 0; suffix_flag = Suffix::NONE; maxeatom = maxvatom = maxcvatom = 0; eatom = nullptr; vatom = nullptr; cvatom = nullptr; setflag = nullptr; centroidstressflag = CENTROID_AVAIL; execution_space = Host; datamask_read = ALL_MASK; datamask_modify = ALL_MASK; copymode = 0; } /* ---------------------------------------------------------------------- */ Angle::~Angle() { if (copymode) return; memory->destroy(eatom); memory->destroy(vatom); memory->destroy(cvatom); } /* ---------------------------------------------------------------------- check if all coeffs are set ------------------------------------------------------------------------- */ void Angle::init() { if (!allocated && atom->nangletypes) error->all(FLERR,"Angle coeffs are not set"); for (int i = 1; i <= atom->nangletypes; i++) if (setflag[i] == 0) error->all(FLERR,"All angle coeffs are not set"); init_style(); } /* ---------------------------------------------------------------------- setup for energy, virial computation see integrate::ev_set() for bitwise settings of eflag/vflag set the following flags, values are otherwise set to 0: evflag != 0 if any bits of eflag or vflag are set eflag_global != 0 if ENERGY_GLOBAL bit of eflag set eflag_atom != 0 if ENERGY_ATOM bit of eflag set eflag_either != 0 if eflag_global or eflag_atom is set vflag_global != 0 if VIRIAL_PAIR or VIRIAL_FDOTR bit of vflag set vflag_atom != 0 if VIRIAL_ATOM bit of vflag set vflag_atom != 0 if VIRIAL_CENTROID bit of vflag set and centroidstressflag != CENTROID_AVAIL cvflag_atom != 0 if VIRIAL_CENTROID bit of vflag set and centroidstressflag = CENTROID_AVAIL vflag_either != 0 if any of vflag_global, vflag_atom, cvflag_atom is set ------------------------------------------------------------------------- */ void Angle::ev_setup(int eflag, int vflag, int alloc) { int i,n; evflag = 1; eflag_either = eflag; eflag_global = eflag & ENERGY_GLOBAL; eflag_atom = eflag & ENERGY_ATOM; vflag_global = vflag & (VIRIAL_PAIR | VIRIAL_FDOTR); vflag_atom = vflag & VIRIAL_ATOM; if (vflag & VIRIAL_CENTROID && centroidstressflag != CENTROID_AVAIL) vflag_atom = 1; cvflag_atom = 0; if (vflag & VIRIAL_CENTROID && centroidstressflag == CENTROID_AVAIL) cvflag_atom = 1; vflag_either = vflag_global || vflag_atom || cvflag_atom; // reallocate per-atom arrays if necessary if (eflag_atom && atom->nmax > maxeatom) { maxeatom = atom->nmax; if (alloc) { memory->destroy(eatom); memory->create(eatom,comm->nthreads*maxeatom,"angle:eatom"); } } if (vflag_atom && atom->nmax > maxvatom) { maxvatom = atom->nmax; if (alloc) { memory->destroy(vatom); memory->create(vatom,comm->nthreads*maxvatom,6,"angle:vatom"); } } if (cvflag_atom && atom->nmax > maxcvatom) { maxcvatom = atom->nmax; if (alloc) { memory->destroy(cvatom); memory->create(cvatom,comm->nthreads*maxcvatom,9,"angle:cvatom"); } } // zero accumulators if (eflag_global) energy = 0.0; if (vflag_global) for (i = 0; i < 6; i++) virial[i] = 0.0; if (eflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) eatom[i] = 0.0; } if (vflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) { vatom[i][0] = 0.0; vatom[i][1] = 0.0; vatom[i][2] = 0.0; vatom[i][3] = 0.0; vatom[i][4] = 0.0; vatom[i][5] = 0.0; } } if (cvflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) { cvatom[i][0] = 0.0; cvatom[i][1] = 0.0; cvatom[i][2] = 0.0; cvatom[i][3] = 0.0; cvatom[i][4] = 0.0; cvatom[i][5] = 0.0; cvatom[i][6] = 0.0; cvatom[i][7] = 0.0; cvatom[i][8] = 0.0; cvatom[i][9] = 0.0; } } } /* ---------------------------------------------------------------------- tally energy and virial into global and per-atom accumulators virial = r1F1 + r2F2 + r3F3 = (r1-r2) F1 + (r3-r2) F3 = del1*f1 + del2*f3 called by standard 3-body angles ------------------------------------------------------------------------- */ void Angle::ev_tally(int i, int j, int k, int nlocal, int newton_bond, double eangle, double *f1, double *f3, double delx1, double dely1, double delz1, double delx2, double dely2, double delz2) { double eanglethird,v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) energy += eangle; else { eanglethird = THIRD*eangle; if (i < nlocal) energy += eanglethird; if (j < nlocal) energy += eanglethird; if (k < nlocal) energy += eanglethird; } } if (eflag_atom) { eanglethird = THIRD*eangle; if (newton_bond || i < nlocal) eatom[i] += eanglethird; if (newton_bond || j < nlocal) eatom[j] += eanglethird; if (newton_bond || k < nlocal) eatom[k] += eanglethird; } } if (vflag_either) { v[0] = delx1*f1[0] + delx2*f3[0]; v[1] = dely1*f1[1] + dely2*f3[1]; v[2] = delz1*f1[2] + delz2*f3[2]; v[3] = delx1*f1[1] + delx2*f3[1]; v[4] = delx1*f1[2] + delx2*f3[2]; v[5] = dely1*f1[2] + dely2*f3[2]; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { double prefactor = 0.0; if (i < nlocal) prefactor += 1.0; if (j < nlocal) prefactor += 1.0; if (k < nlocal) prefactor += 1.0; virial[0] += prefactor*THIRD*v[0]; virial[1] += prefactor*THIRD*v[1]; virial[2] += prefactor*THIRD*v[2]; virial[3] += prefactor*THIRD*v[3]; virial[4] += prefactor*THIRD*v[4]; virial[5] += prefactor*THIRD*v[5]; } } if (vflag_atom) { if (newton_bond || i < nlocal) { vatom[i][0] += THIRD*v[0]; vatom[i][1] += THIRD*v[1]; vatom[i][2] += THIRD*v[2]; vatom[i][3] += THIRD*v[3]; vatom[i][4] += THIRD*v[4]; vatom[i][5] += THIRD*v[5]; } if (newton_bond || j < nlocal) { vatom[j][0] += THIRD*v[0]; vatom[j][1] += THIRD*v[1]; vatom[j][2] += THIRD*v[2]; vatom[j][3] += THIRD*v[3]; vatom[j][4] += THIRD*v[4]; vatom[j][5] += THIRD*v[5]; } if (newton_bond || k < nlocal) { vatom[k][0] += THIRD*v[0]; vatom[k][1] += THIRD*v[1]; vatom[k][2] += THIRD*v[2]; vatom[k][3] += THIRD*v[3]; vatom[k][4] += THIRD*v[4]; vatom[k][5] += THIRD*v[5]; } } } // per-atom centroid virial if (cvflag_atom) { // r0 = (r1+r2+r3)/3 // rij = ri-rj // total virial = r10*f1 + r20*f2 + r30*f3 // del1: r12 // del2: r32 if (newton_bond || i < nlocal) { double a1[3]; // a1 = r10 = (2*r12 - r32)/3 a1[0] = THIRD*(2*delx1-delx2); a1[1] = THIRD*(2*dely1-dely2); a1[2] = THIRD*(2*delz1-delz2); cvatom[i][0] += a1[0]*f1[0]; cvatom[i][1] += a1[1]*f1[1]; cvatom[i][2] += a1[2]*f1[2]; cvatom[i][3] += a1[0]*f1[1]; cvatom[i][4] += a1[0]*f1[2]; cvatom[i][5] += a1[1]*f1[2]; cvatom[i][6] += a1[1]*f1[0]; cvatom[i][7] += a1[2]*f1[0]; cvatom[i][8] += a1[2]*f1[1]; } if (newton_bond || j < nlocal) { double a2[3]; double f2[3]; // a2 = r20 = ( -r12 - r32)/3 a2[0] = THIRD*(-delx1-delx2); a2[1] = THIRD*(-dely1-dely2); a2[2] = THIRD*(-delz1-delz2); f2[0] = - f1[0] - f3[0]; f2[1] = - f1[1] - f3[1]; f2[2] = - f1[2] - f3[2]; cvatom[j][0] += a2[0]*f2[0]; cvatom[j][1] += a2[1]*f2[1]; cvatom[j][2] += a2[2]*f2[2]; cvatom[j][3] += a2[0]*f2[1]; cvatom[j][4] += a2[0]*f2[2]; cvatom[j][5] += a2[1]*f2[2]; cvatom[j][6] += a2[1]*f2[0]; cvatom[j][7] += a2[2]*f2[0]; cvatom[j][8] += a2[2]*f2[1]; } if (newton_bond || k < nlocal) { double a3[3]; // a3 = r30 = ( -r12 + 2*r32)/3 a3[0] = THIRD*(-delx1+2*delx2); a3[1] = THIRD*(-dely1+2*dely2); a3[2] = THIRD*(-delz1+2*delz2); cvatom[k][0] += a3[0]*f3[0]; cvatom[k][1] += a3[1]*f3[1]; cvatom[k][2] += a3[2]*f3[2]; cvatom[k][3] += a3[0]*f3[1]; cvatom[k][4] += a3[0]*f3[2]; cvatom[k][5] += a3[1]*f3[2]; cvatom[k][6] += a3[1]*f3[0]; cvatom[k][7] += a3[2]*f3[0]; cvatom[k][8] += a3[2]*f3[1]; } } } /* ---------------------------------------------------------------------- tally energy and virial into global and per-atom accumulators virial = r1F1 + r2F2 + r3F3 + r4F4 called by AngleAmoeba for its 4-body angle term ------------------------------------------------------------------------- */ void Angle::ev_tally4(int i, int j, int k, int m, int nlocal, int newton_bond, double eangle, double *f1, double *f2, double *f3, double *f4) { double eanglefourth,v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) energy += eangle; else { eanglefourth = FOURTH*eangle; if (i < nlocal) energy += eanglefourth; if (j < nlocal) energy += eanglefourth; if (k < nlocal) energy += eanglefourth; } } if (eflag_atom) { eanglefourth = FOURTH*eangle; if (newton_bond || i < nlocal) eatom[i] += eanglefourth; if (newton_bond || j < nlocal) eatom[j] += eanglefourth; if (newton_bond || k < nlocal) eatom[k] += eanglefourth; if (newton_bond || m < nlocal) eatom[m] += eanglefourth; } } if (vflag_either) { double **x = atom->x; v[0] = x[i][0]*f1[0] + x[j][0]*f2[0] + x[k][0]*f3[0] + x[m][0]*f4[0]; v[1] = x[i][1]*f1[1] + x[j][1]*f2[1] + x[k][1]*f3[1] + x[m][1]*f4[1]; v[2] = x[i][2]*f1[2] + x[j][2]*f2[2] + x[k][2]*f3[2] + x[m][2]*f4[2]; v[3] = x[i][0]*f1[1] + x[j][0]*f2[1] + x[k][0]*f3[1] + x[m][0]*f4[1]; v[4] = x[i][0]*f1[2] + x[j][0]*f2[2] + x[k][0]*f3[2] + x[m][0]*f4[2]; v[5] = x[i][1]*f1[2] + x[j][1]*f2[2] + x[k][1]*f3[2] + x[m][1]*f4[2]; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { double prefactor = 0.0; if (i < nlocal) prefactor += 1.0; if (j < nlocal) prefactor += 1.0; if (k < nlocal) prefactor += 1.0; if (m < nlocal) prefactor += 1.0; virial[0] += prefactor*FOURTH*v[0]; virial[1] += prefactor*FOURTH*v[1]; virial[2] += prefactor*FOURTH*v[2]; virial[3] += prefactor*FOURTH*v[3]; virial[4] += prefactor*FOURTH*v[4]; virial[5] += prefactor*FOURTH*v[5]; } } if (vflag_atom) { if (newton_bond || i < nlocal) { vatom[i][0] += FOURTH*v[0]; vatom[i][1] += FOURTH*v[1]; vatom[i][2] += FOURTH*v[2]; vatom[i][3] += FOURTH*v[3]; vatom[i][4] += FOURTH*v[4]; vatom[i][5] += FOURTH*v[5]; } if (newton_bond || j < nlocal) { vatom[j][0] += FOURTH*v[0]; vatom[j][1] += FOURTH*v[1]; vatom[j][2] += FOURTH*v[2]; vatom[j][3] += FOURTH*v[3]; vatom[j][4] += FOURTH*v[4]; vatom[j][5] += FOURTH*v[5]; } if (newton_bond || k < nlocal) { vatom[k][0] += FOURTH*v[0]; vatom[k][1] += FOURTH*v[1]; vatom[k][2] += FOURTH*v[2]; vatom[k][3] += FOURTH*v[3]; vatom[k][4] += FOURTH*v[4]; vatom[k][5] += FOURTH*v[5]; } if (newton_bond || m < nlocal) { vatom[m][0] += FOURTH*v[0]; vatom[m][1] += FOURTH*v[1]; vatom[m][2] += FOURTH*v[2]; vatom[m][3] += FOURTH*v[3]; vatom[m][4] += FOURTH*v[4]; vatom[m][5] += FOURTH*v[5]; } } } } /* ---------------------------------------------------------------------- tally energy and virial into global and per-atom accumulators called by AngleAmoeba for its 2-body Urey-Bradley H-H bond term identical to Bond:ev_tally() ------------------------------------------------------------------------- */ void Angle::ev_tally2(int i, int j, int nlocal, int newton_bond, double ebond, double fbond, double delx, double dely, double delz) { double ebondhalf,v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) energy += ebond; else { ebondhalf = 0.5*ebond; if (i < nlocal) energy += ebondhalf; if (j < nlocal) energy += ebondhalf; } } if (eflag_atom) { ebondhalf = 0.5*ebond; if (newton_bond || i < nlocal) eatom[i] += ebondhalf; if (newton_bond || j < nlocal) eatom[j] += ebondhalf; } } if (vflag_either) { v[0] = delx*delx*fbond; v[1] = dely*dely*fbond; v[2] = delz*delz*fbond; v[3] = delx*dely*fbond; v[4] = delx*delz*fbond; v[5] = dely*delz*fbond; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { if (i < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } if (j < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } } } if (vflag_atom) { if (newton_bond || i < nlocal) { vatom[i][0] += 0.5*v[0]; vatom[i][1] += 0.5*v[1]; vatom[i][2] += 0.5*v[2]; vatom[i][3] += 0.5*v[3]; vatom[i][4] += 0.5*v[4]; vatom[i][5] += 0.5*v[5]; } if (newton_bond || j < nlocal) { vatom[j][0] += 0.5*v[0]; vatom[j][1] += 0.5*v[1]; vatom[j][2] += 0.5*v[2]; vatom[j][3] += 0.5*v[3]; vatom[j][4] += 0.5*v[4]; vatom[j][5] += 0.5*v[5]; } } } } /* ---------------------------------------------------------------------- */ double Angle::memory_usage() { double bytes = (double)comm->nthreads*maxeatom * sizeof(double); bytes += (double)comm->nthreads*maxvatom*6 * sizeof(double); bytes += (double)comm->nthreads*maxcvatom*9 * sizeof(double); return bytes; }