/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "math.h" #include "stdlib.h" #include "angle_cosine.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleCosine::AngleCosine(LAMMPS *lmp) : Angle(lmp) {} /* ---------------------------------------------------------------------- */ AngleCosine::~AngleCosine() { if (allocated) { memory->sfree(setflag); memory->sfree(k); } } /* ---------------------------------------------------------------------- */ void AngleCosine::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double rsq1,rsq2,r1,r2,c,a,a11,a12,a22; eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // c = cosine of angle c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; // force & energy if (eflag) eangle = k[type]*(1.0+c); a = k[type]; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleCosine::allocate() { allocated = 1; int n = atom->nangletypes; k = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k"); setflag = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one type ------------------------------------------------------------------------- */ void AngleCosine::coeff(int which, int narg, char **arg) { if (which > 0) return; if (narg != 2) error->all("Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(arg[0],atom->nangletypes,ilo,ihi); double k_one = atof(arg[1]); int count = 0; for (int i = ilo; i <= ihi; i++) { k[i] = k_one; setflag[i] = 1; count++; } if (count == 0) error->all("Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- */ double AngleCosine::equilibrium_angle(int i) { return PI; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleCosine::write_restart(FILE *fp) { fwrite(&k[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleCosine::read_restart(FILE *fp) { allocate(); if (comm->me == 0) fread(&k[1],sizeof(double),atom->nangletypes,fp); MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- */ double AngleCosine::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; return k[type]*(1.0+c); }