/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "lmptype.h" #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_soft_gpu.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "universe.h" #include "update.h" #include "domain.h" #include "string.h" #include "gpu_extra.h" #include "math_const.h" using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int soft_gpu_init(const int ntypes, double **cutsq, double **prefactor, double **cut, double *special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void soft_gpu_reinit(const int ntypes, double **cutsq, double **host_prefactor, double **host_cut); void soft_gpu_clear(); int ** soft_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success); void soft_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success); double soft_gpu_bytes(); using namespace MathConst; /* ---------------------------------------------------------------------- */ PairSoftGPU::PairSoftGPU(LAMMPS *lmp) : PairSoft(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; cpu_time = 0.0; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairSoftGPU::~PairSoftGPU() { soft_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairSoftGPU::compute(int eflag, int vflag) { if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = soft_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; soft_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success); } if (!success) error->one(FLERR,"Insufficient memory on accelerator"); if (host_startnewton_pair) error->all(FLERR,"Cannot use newton pair with soft/gpu pair style"); // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double mcut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { mcut = init_one(i,j); mcut *= mcut; if (mcut > maxcut) maxcut = mcut; cutsq[i][j] = cutsq[j][i] = mcut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = soft_gpu_init(atom->ntypes+1, cutsq, prefactor, cut, force->special_lj, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } } /* ---------------------------------------------------------------------- */ void PairSoftGPU::reinit() { Pair::reinit(); soft_gpu_reinit(atom->ntypes+1, cutsq, prefactor, cut); } /* ---------------------------------------------------------------------- */ double PairSoftGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + soft_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairSoftGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double r,rsq,arg,factor_lj; int *jlist; double **x = atom->x; double **f = atom->f; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); arg = MY_PI*r/cut[itype][jtype]; if (r > 0.0) fpair = factor_lj * prefactor[itype][jtype] * sin(arg) * MY_PI/cut[itype][jtype]/r; else fpair = 0.0; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (eflag) evdwl = factor_lj * prefactor[itype][jtype] * (1.0+cos(arg)); if (evflag) ev_tally_full(i,evdwl,0.0,fpair,delx,dely,delz); } } } }