#include "ATC_HardyKernel.h" #include "math.h" #include //for debugging purposes; take this out after I'm done #include #include "ATC_Error.h" #include "Quadrature.h" using namespace std; static const double Pi = 4.0*atan(1.0); static const double tol = 1.0e-8; namespace ATC { //------------------------------------------------------------------------ // constructor ATC_HardyKernel::ATC_HardyKernel(int nparameters, double* parameters): lammpsInterface_(LammpsInterface::instance()), Rc_(0),invRc_(0),nsd_(3) { Rc_ = parameters[0]; invRc_ = 1.0/Rc_; Rc_ = parameters[0]; invRc_ = 1.0/Rc_; invVol_ = 1.0/(4.0/3.0*Pi*pow(Rc_,3)); set_line_quadrature(line_ngauss,line_xg,line_wg); // get periodicity and box bounds/lengths lammpsInterface_->get_box_periodicity(periodicity[0], periodicity[1],periodicity[2]); lammpsInterface_->get_box_bounds(box_bounds[0][0],box_bounds[1][0], box_bounds[0][1],box_bounds[1][1], box_bounds[0][2],box_bounds[1][2]); for (int k = 0; k < 3; k++) { box_length[k] = box_bounds[1][k] - box_bounds[0][k]; } }; // bond function value via quadrature double ATC_HardyKernel::bond(DENS_VEC& xa, DENS_VEC&xb, double lam1, double lam2) { DENS_VEC xab(nsd_), q(nsd_); double lamg; double bhsum=0.0; xab = xa - xb; for (int i = 0; i < line_ngauss; i++) { lamg=0.5*((lam2-lam1)*line_xg[i]+(lam2+lam1)); q = lamg*xab + xb; double locg_value=this->value(q); bhsum+=locg_value*line_wg[i]; } return 0.5*(lam2-lam1)*bhsum; } // localization-volume intercepts for bond calculation // bond intercept values assuming spherical support void ATC_HardyKernel::bond_intercepts(DENS_VEC& xa, DENS_VEC& xb, double &lam1, double &lam2) { if (nsd_ == 2) {// for cylinders, axis is always z! const int iaxis = 2; xa[iaxis] = 0.0; xb[iaxis] = 0.0; } lam1 = lam2 = -1; double ra_n = invRc_*xa.norm(); // lambda = 1 double rb_n = invRc_*xb.norm(); // lambda = 0 bool a_in = (ra_n <= 1.0); bool b_in = (rb_n <= 1.0); if (a_in && b_in) { lam1 = 0.0; lam2 = 1.0; return; } DENS_VEC xab = xa - xb; double rab_n = invRc_*xab.norm(); double a = rab_n*rab_n; // always at least an interatomic distance double b = 2.0*invRc_*invRc_*xab.dot(xb); double c = rb_n*rb_n - 1.0; double discrim = b*b - 4.0*a*c; // discriminant if (discrim < 0) return; // no intersection // num recipes: double s1, s2; if (b < 0.0) { double aux = -0.5*(b-sqrt(discrim)); s1 = c/aux; s2 = aux/a; } else { double aux = -0.5*(b+sqrt(discrim)); s1 = aux/a; s2 = c/aux; } if (a_in && !b_in) { lam1 = s1; lam2 = 1.0; } else if (!a_in && b_in) { lam1 = 0.0; lam2 = s2; } else { if (s1 >= 0.0 && s2 <= 1.0) { lam1 = s1; lam2 = s2; } } }; //------------------------------------------------------------------------ // constructor ATC_HardyKernelStep::ATC_HardyKernelStep (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (Rc_ > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelStep::value(DENS_VEC& x_atom) { double rn=invRc_*x_atom.norm(); if (rn <= 1.0) { return 1.0; } else { return 0.0; } }; //------------------------------------------------------------------------ /** a step with rectangular support suitable for a rectangular grid */ // constructor ATC_HardyKernelCell::ATC_HardyKernelCell (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { hx = parameters[0]; hy = parameters[1]; hz = parameters[2]; invVol_ = 1.0/8.0/(hx*hy*hz); cellBounds_.reset(6); cellBounds_(0) = -hx; cellBounds_(1) = hx; cellBounds_(2) = -hy; cellBounds_(3) = hy; cellBounds_(4) = -hz; cellBounds_(5) = hz; for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (parameters[k] > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelCell::value(DENS_VEC& x_atom) { if ((cellBounds_(0) <= x_atom(0)) && (x_atom(0) < cellBounds_(1)) && (cellBounds_(2) <= x_atom(1)) && (x_atom(1) < cellBounds_(3)) && (cellBounds_(4) <= x_atom(2)) && (x_atom(2) < cellBounds_(5))) { return 1.0; } else { return 0.0; } }; // bond intercept values for rectangular region : origin is the node position void ATC_HardyKernelCell::bond_intercepts(DENS_VEC& xa, DENS_VEC& xb, double &lam1, double &lam2) { lam1 = 0.0; // start lam2 = 1.0; // end bool a_in = (value(xa) > 0.0); bool b_in = (value(xb) > 0.0); // (1) both in, no intersection needed if (a_in && b_in) { return; } // (2) for one in & one out -> one plane intersection // determine the points of intersection between the line joining // atoms a and b and the bounding planes of the localization volume else if (a_in || b_in) { DENS_VEC xab = xa - xb; for (int i = 0; i < nsd_; i++) { // check if segment is parallel to face if (fabs(xab(i)) > tol) { for (int j = 0; j < 2; j++) { double s = (cellBounds_(2*i+j) - xb(i))/xab(i); // check if between a & b if (s >= 0 && s <= 1) { bool in_bounds = false; DENS_VEC x = xb + s*xab; if (i == 0) { if ((cellBounds_(2) <= x(1)) && (x(1) <= cellBounds_(3)) && (cellBounds_(4) <= x(2)) && (x(2) <= cellBounds_(5))) { in_bounds = true; } } else if (i == 1) { if ((cellBounds_(0) <= x(0)) && (x(0) <= cellBounds_(1)) && (cellBounds_(4) <= x(2)) && (x(2) <= cellBounds_(5))) { in_bounds = true; } } else if (i == 2) { if ((cellBounds_(0) <= x(0)) && (x(0) <= cellBounds_(1)) && (cellBounds_(2) <= x(1)) && (x(1) <= cellBounds_(3))) { in_bounds = true; } } if (in_bounds) { if (a_in) { lam1 = s;} else { lam2 = s;} return; } } } } } throw ATC_Error(0,"logic failure in HardyKernel Cell for single intersection\n"); } // (3) both out -> corner intersection else { lam2 = lam1; // default to no intersection DENS_VEC xab = xa - xb; double ss[6] = {-1,-1,-1,-1,-1,-1}; int is = 0; for (int i = 0; i < nsd_; i++) { // check if segment is parallel to face if (fabs(xab(i)) > tol) { for (int j = 0; j < 2; j++) { double s = (cellBounds_(2*i+j) - xb(i))/xab(i); // check if between a & b if (s >= 0 && s <= 1) { // check if in face DENS_VEC x = xb + s*xab; if (i == 0) { if ((cellBounds_(2) <= x(1)) && (x(1) <= cellBounds_(3)) && (cellBounds_(4) <= x(2)) && (x(2) <= cellBounds_(5))) { ss[is++] = s; } } else if (i == 1) { if ((cellBounds_(0) <= x(0)) && (x(0) <= cellBounds_(1)) && (cellBounds_(4) <= x(2)) && (x(2) <= cellBounds_(5))) { ss[is++] = s; } } else if (i == 2) { if ((cellBounds_(0) <= x(0)) && (x(0) <= cellBounds_(1)) && (cellBounds_(2) <= x(1)) && (x(1) <= cellBounds_(3))) { ss[is++] = s; } } } } } } if (is == 1) { // intersection occurs at a box edge - leave lam1 = lam2 } else if (is == 2) { lam1 = min(ss[0],ss[1]); lam2 = max(ss[0],ss[1]); } else if (is == 3) { // intersection occurs at a box vertex - leave lam1 = lam2 } else { if (is != 0) throw ATC_Error(0,"logic failure in HardyKernel Cell for corner intersection\n"); } } } //------------------------------------------------------------------------ // constructor ATC_HardyKernelCubicSphere::ATC_HardyKernelCubicSphere (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (Rc_ > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelCubicSphere::value(DENS_VEC& x_atom) { double r=x_atom.norm(); double rn=r/Rc_; if (rn < 1.0) { return 5.0*(1.0-3.0*rn*rn+2.0*rn*rn*rn); } else { return 0.0; } } //------------------------------------------------------------------------ // constructor ATC_HardyKernelQuarticSphere::ATC_HardyKernelQuarticSphere (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (Rc_ > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelQuarticSphere::value(DENS_VEC& x_atom) { double r=x_atom.norm(); double rn=r/Rc_; if (rn < 1.0) { return 35.0/8.0*pow((1.0-rn*rn),2); } else { return 0.0; } } //------------------------------------------------------------------------ // constructor ATC_HardyKernelCubicCyl::ATC_HardyKernelCubicCyl (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { nsd_ = 2; double Lz = box_length[2]; invVol_ = 1.0/(Pi*pow(Rc_,2)*Lz); for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (Rc_ > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelCubicCyl::value(DENS_VEC& x_atom) { double r=sqrt(pow(x_atom(0),2)+pow(x_atom(1),2)); double rn=r/Rc_; if (rn < 1.0) { return 10.0/3.0*(1.0-3.0*rn*rn+2.0*rn*rn*rn); } else { return 0.0; } } //------------------------------------------------------------------------ // constructor ATC_HardyKernelQuarticCyl::ATC_HardyKernelQuarticCyl (int nparameters, double* parameters): ATC_HardyKernel(nparameters, parameters) { nsd_ = 2; double Lz = box_length[2]; invVol_ = 1.0/(Pi*pow(Rc_,2)*Lz); for (int k = 0; k < nsd_; k++ ) { if ((bool) periodicity[k]) { if (Rc_ > 0.5*box_length[k]) { throw ATC_Error(0,"Size of localization volume is too large for periodic boundary condition"); }; }; }; } // function value double ATC_HardyKernelQuarticCyl::value(DENS_VEC& x_atom) { double r=sqrt(pow(x_atom(0),2)+pow(x_atom(1),2)); double rn=r/Rc_; if (rn < 1.0) { return 3.0*pow((1.0-rn*rn),2); } else { return 0.0; } } };