// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "pair_colloid_omp.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "math_special.h" #include "neigh_list.h" #include "suffix.h" #include #include "omp_compat.h" using namespace LAMMPS_NS; using namespace MathSpecial; /* ---------------------------------------------------------------------- */ PairColloidOMP::PairColloidOMP(LAMMPS *lmp) : PairColloid(lmp), ThrOMP(lmp, THR_PAIR) { suffix_flag |= Suffix::OMP; respa_enable = 0; } /* ---------------------------------------------------------------------- */ void PairColloidOMP::compute(int eflag, int vflag) { ev_init(eflag,vflag); const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = list->inum; #if defined(_OPENMP) #pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, nullptr, thr); if (evflag) { if (eflag) { if (force->newton_pair) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_pair) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_pair) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } thr->timer(Timer::PAIR); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void PairColloidOMP::eval(int iifrom, int iito, ThrData * const thr) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,r,r2inv,r6inv,forcelj,factor_lj; double c1,c2,fR,dUR,dUA,K[9],h[4],g[4]; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; const auto * _noalias const x = (dbl3_t *) atom->x[0]; auto * _noalias const f = (dbl3_t *) thr->get_f()[0]; const int * _noalias const type = atom->type; const int nlocal = atom->nlocal; const int tid = thr->get_tid(); const double * _noalias const special_lj = force->special_lj; double fxtmp,fytmp,fztmp; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = iifrom; ii < iito; ++ii) { i = ilist[ii]; xtmp = x[i].x; ytmp = x[i].y; ztmp = x[i].z; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; fxtmp=fytmp=fztmp=0.0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j].x; dely = ytmp - x[j].y; delz = ztmp - x[j].z; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq >= cutsq[itype][jtype]) continue; switch(form[itype][jtype]) { case SMALL_SMALL: r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); fpair = factor_lj*forcelj*r2inv; if (EFLAG) evdwl = r6inv*(r6inv*lj3[itype][jtype]-lj4[itype][jtype]) - offset[itype][jtype]; break; case SMALL_LARGE: c2 = a2[itype][jtype]; K[1] = c2*c2; K[2] = rsq; K[0] = K[1] - rsq; K[4] = rsq*rsq; K[3] = K[1] - K[2]; K[3] *= K[3]*K[3]; K[6] = K[3]*K[3]; fR = sigma3[itype][jtype]*a12[itype][jtype]*c2*K[1]/K[3]; fpair = 4.0/15.0*fR*factor_lj * (2.0*(K[1]+K[2]) * (K[1]*(5.0*K[1]+22.0*K[2])+5.0*K[4]) * sigma6[itype][jtype]/K[6]-5.0) / K[0]; if (EFLAG) evdwl = 2.0/9.0*fR * (1.0-(K[1]*(K[1]*(K[1]/3.0+3.0*K[2])+4.2*K[4])+K[2]*K[4]) * sigma6[itype][jtype]/K[6]) - offset[itype][jtype]; if (check_error_thr((rsq <= K[1]),tid,FLERR, "Overlapping small/large in pair colloid")) return; break; case LARGE_LARGE: r = sqrt(rsq); c1 = a1[itype][jtype]; c2 = a2[itype][jtype]; K[0] = c1*c2; K[1] = c1+c2; K[2] = c1-c2; K[3] = K[1]+r; K[4] = K[1]-r; K[5] = K[2]+r; K[6] = K[2]-r; K[7] = 1.0/(K[3]*K[4]); K[8] = 1.0/(K[5]*K[6]); g[0] = powint(K[3],-7); g[1] = powint(K[4],-7); g[2] = powint(K[5],-7); g[3] = powint(K[6],-7); h[0] = ((K[3]+5.0*K[1])*K[3]+30.0*K[0])*g[0]; h[1] = ((K[4]+5.0*K[1])*K[4]+30.0*K[0])*g[1]; h[2] = ((K[5]+5.0*K[2])*K[5]-30.0*K[0])*g[2]; h[3] = ((K[6]+5.0*K[2])*K[6]-30.0*K[0])*g[3]; g[0] *= 42.0*K[0]/K[3]+6.0*K[1]+K[3]; g[1] *= 42.0*K[0]/K[4]+6.0*K[1]+K[4]; g[2] *= -42.0*K[0]/K[5]+6.0*K[2]+K[5]; g[3] *= -42.0*K[0]/K[6]+6.0*K[2]+K[6]; fR = a12[itype][jtype]*sigma6[itype][jtype]/r/37800.0; evdwl = fR * (h[0]-h[1]-h[2]+h[3]); dUR = evdwl/r + 5.0*fR*(g[0]+g[1]-g[2]-g[3]); dUA = -a12[itype][jtype]/3.0*r*((2.0*K[0]*K[7]+1.0)*K[7] + (2.0*K[0]*K[8]-1.0)*K[8]); fpair = factor_lj * (dUR+dUA)/r; if (EFLAG) evdwl += a12[itype][jtype]/6.0 * (2.0*K[0]*(K[7]+K[8])-log(K[8]/K[7])) - offset[itype][jtype]; if (r <= K[1]) error->one(FLERR,"Overlapping large/large in pair colloid"); break; } if (EFLAG) evdwl *= factor_lj; fxtmp += delx*fpair; fytmp += dely*fpair; fztmp += delz*fpair; if (NEWTON_PAIR || j < nlocal) { f[j].x -= delx*fpair; f[j].y -= dely*fpair; f[j].z -= delz*fpair; } if (EVFLAG) ev_tally_thr(this, i,j,nlocal,NEWTON_PAIR, evdwl,0.0,fpair,delx,dely,delz,thr); } f[i].x += fxtmp; f[i].y += fytmp; f[i].z += fztmp; } } /* ---------------------------------------------------------------------- */ double PairColloidOMP::memory_usage() { double bytes = memory_usage_thr(); bytes += PairColloid::memory_usage(); return bytes; }