/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "../testing/core.h" #include "info.h" #include "lammps.h" #include "library.h" #include "utils.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include #include // whether to print verbose output (i.e. not capturing LAMMPS screen output). bool verbose = false; // we compare floating point numbers with 8 digits precision after the decimal point static constexpr double EPSILON = 1.0e-8; namespace LAMMPS_NS { #define STRINGIFY(val) XSTR(val) #define XSTR(val) #val class ComputeChunkTest : public LAMMPSTest { protected: void SetUp() override { testbinary = "ComputeChunkTest"; LAMMPSTest::SetUp(); if (info->has_style("atom", "full")) { BEGIN_HIDE_OUTPUT(); command("variable input_dir index \"" STRINGIFY(TEST_INPUT_FOLDER) "\""); command("include \"${input_dir}/in.fourmol\""); command("group allwater molecule 3:6"); command("region half block 0.0 INF INF INF INF INF"); command("compute tags all property/atom id"); command("compute bin1d all chunk/atom bin/1d x lower 3.0 units box"); command("compute bin2d all chunk/atom bin/2d x lower 3.0 y lower 3.0 units box"); command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 units " "box"); command("compute binsph all chunk/atom bin/sphere 0.0 0.0 0.0 0.01 6.01 6 units box"); command("compute bincyl all chunk/atom bin/cylinder z lower 3.0 1.0 1.0 0.01 6.01 6 " "units box"); command("compute mols all chunk/atom molecule"); command("compute types all chunk/atom type"); END_HIDE_OUTPUT(); } } double get_scalar(const char *id) { return *(double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_SCALAR); } double *get_vector(const char *id) { return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_VECTOR); } double **get_array(const char *id) { return (double **)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY); } double *get_peratom(const char *id) { return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_ATOM, LMP_TYPE_VECTOR); } }; static constexpr int chunk1d[] = {0, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 2}; static constexpr int chalf1d[] = {0, 0, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 0, 0, 0}; static constexpr int chunk2d[] = {0, 9, 14, 8, 9, 8, 13, 13, 13, 13, 13, 12, 18, 18, 13, 18, 12, 12, 14, 14, 14, 17, 17, 17, 14, 14, 14, 7, 7, 7}; static constexpr int chunk3d[] = {0, 43, 68, 38, 43, 38, 63, 62, 63, 63, 63, 58, 88, 88, 62, 88, 58, 59, 67, 67, 67, 82, 82, 82, 69, 69, 69, 34, 34, 34}; static constexpr int chunksph[] = {0, 3, 4, 2, 3, 2, 2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5}; static constexpr int chunkcyl[] = {0, 8, 13, 8, 13, 8, 8, 7, 8, 8, 13, 18, 13, 18, 12, 13, 18, 19, 12, 7, 17, 27, 27, 27, 14, 14, 19, 29, 29, 29}; static constexpr int chunkmol[] = {0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6}; static constexpr int chunktyp[] = {0, 3, 2, 1, 2, 2, 1, 4, 3, 2, 1, 2, 1, 2, 2, 2, 1, 4, 4, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2}; TEST_F(ComputeChunkTest, ChunkAtom) { if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP(); BEGIN_HIDE_OUTPUT(); command("pair_style lj/cut/coul/cut 10.0"); command("pair_coeff * * 0.01 3.0"); command("bond_style harmonic"); command("bond_coeff * 100.0 1.5"); command("dump 1 all custom 1 compute_chunk_atom.lammpstrj " "id c_bin1d c_bin2d c_bin3d c_binsph c_bincyl c_mols c_types c_tags"); command("run 0 post no"); END_HIDE_OUTPUT(); const int natoms = lammps_get_natoms(lmp); EXPECT_EQ(get_scalar("bin1d"), 5); EXPECT_EQ(get_scalar("bin2d"), 25); EXPECT_EQ(get_scalar("bin3d"), 125); EXPECT_EQ(get_scalar("binsph"), 6); EXPECT_EQ(get_scalar("bincyl"), 30); EXPECT_EQ(get_scalar("mols"), 6); EXPECT_EQ(get_scalar("types"), 5); auto cbin1d = get_peratom("bin1d"); auto cbin2d = get_peratom("bin2d"); auto cbin3d = get_peratom("bin3d"); auto cbinsph = get_peratom("binsph"); auto cbincyl = get_peratom("bincyl"); auto cmols = get_peratom("mols"); auto ctypes = get_peratom("types"); auto tag = get_peratom("tags"); for (int i = 0; i < natoms; ++i) { EXPECT_EQ(cbin1d[i], chunk1d[(int)tag[i]]); EXPECT_EQ(cbin2d[i], chunk2d[(int)tag[i]]); EXPECT_EQ(cbin3d[i], chunk3d[(int)tag[i]]); EXPECT_EQ(cbinsph[i], chunksph[(int)tag[i]]); EXPECT_EQ(cbincyl[i], chunkcyl[(int)tag[i]]); EXPECT_EQ(cmols[i], chunkmol[(int)tag[i]]); EXPECT_EQ(ctypes[i], chunktyp[(int)tag[i]]); } BEGIN_HIDE_OUTPUT(); command("uncompute bin1d"); command("compute bin1d all chunk/atom bin/1d x lower 0.2 units reduced region half"); command("uncompute bin3d"); command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 " "compress yes units box"); END_HIDE_OUTPUT(); EXPECT_EQ(get_scalar("bin1d"), 5); EXPECT_EQ(get_scalar("bin3d"), 12); cbin1d = get_peratom("bin1d"); tag = get_peratom("tags"); for (int i = 0; i < natoms; ++i) { EXPECT_EQ(cbin1d[i], chalf1d[(int)tag[i]]); } // cleanup platform::unlink("compute_chunk_atom.lammpstrj"); } TEST_F(ComputeChunkTest, PropertyChunk) { if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP(); BEGIN_HIDE_OUTPUT(); command("pair_style lj/cut/coul/cut 10.0"); command("pair_coeff * * 0.01 3.0"); command("bond_style harmonic"); command("bond_coeff * 100.0 1.5"); command("uncompute bin3d"); command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 " "compress yes units box"); command("compute prop1 all property/chunk bin1d count"); command("compute prop2 all property/chunk bin2d count"); command("compute prop3 all property/chunk bin3d id count"); command("fix hist1 all ave/time 1 1 1 c_prop1 mode vector"); command("fix hist2 all ave/time 1 1 1 c_prop2 mode vector"); command("fix hist3 all ave/time 1 1 1 c_prop3[*] mode vector"); command("run 0 post no"); END_HIDE_OUTPUT(); auto cprop1 = get_vector("prop1"); EXPECT_EQ(cprop1[0], 0); EXPECT_EQ(cprop1[1], 7); EXPECT_EQ(cprop1[2], 16); EXPECT_EQ(cprop1[3], 6); EXPECT_EQ(cprop1[4], 0); auto cprop2 = get_vector("prop2"); int nempty = 0; int ncount = 0; for (int i = 0; i < 25; ++i) { if (cprop2[i] == 0) ++nempty; else ncount += cprop2[i]; } EXPECT_EQ(nempty, 17); EXPECT_EQ(ncount, 29); auto cprop3 = get_array("prop3"); EXPECT_EQ(cprop3[0][0], 34); EXPECT_EQ(cprop3[1][0], 38); EXPECT_EQ(cprop3[2][0], 43); EXPECT_EQ(cprop3[3][0], 58); EXPECT_EQ(cprop3[4][0], 59); EXPECT_EQ(cprop3[5][0], 62); EXPECT_EQ(cprop3[6][0], 63); EXPECT_EQ(cprop3[7][0], 67); EXPECT_EQ(cprop3[8][0], 68); EXPECT_EQ(cprop3[9][0], 69); EXPECT_EQ(cprop3[10][0], 82); EXPECT_EQ(cprop3[11][0], 88); EXPECT_EQ(cprop3[0][1], 3); EXPECT_EQ(cprop3[1][1], 2); EXPECT_EQ(cprop3[2][1], 2); EXPECT_EQ(cprop3[3][1], 2); EXPECT_EQ(cprop3[4][1], 1); EXPECT_EQ(cprop3[5][1], 2); EXPECT_EQ(cprop3[6][1], 4); EXPECT_EQ(cprop3[7][1], 3); EXPECT_EQ(cprop3[8][1], 1); EXPECT_EQ(cprop3[9][1], 3); EXPECT_EQ(cprop3[10][1], 3); EXPECT_EQ(cprop3[11][1], 3); } TEST_F(ComputeChunkTest, ChunkComputes) { if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP(); BEGIN_HIDE_OUTPUT(); command("pair_style lj/cut/coul/cut 10.0"); command("pair_coeff * * 0.01 3.0"); command("bond_style harmonic"); command("bond_coeff * 100.0 1.5"); command("compute ang all angmom/chunk mols"); command("compute com all com/chunk mols"); command("compute dip all dipole/chunk mols geometry"); command("compute gyr all gyration/chunk mols"); command("compute mom all inertia/chunk mols"); command("compute omg all omega/chunk mols"); command("compute tmp all temp/chunk mols com yes"); command("compute trq all torque/chunk mols"); command("compute vcm all vcm/chunk mols"); command("fix hist1 all ave/time 1 1 1 c_ang[*] c_com[*] c_dip[*] c_gyr c_mom[*] c_omg[*] " "c_trq[*] c_vcm[*] mode vector file all_chunk.dat format %15.8f"); command("fix hist2 all ave/time 1 1 1 c_tmp mode vector file vec_chunk.dat format %15.8f"); command("run 0 post no"); END_HIDE_OUTPUT(); auto cang = get_array("ang"); auto ccom = get_array("com"); auto cdip = get_array("dip"); auto cgyr = get_vector("gyr"); auto cmom = get_array("mom"); auto comg = get_array("omg"); auto ctmp = get_vector("tmp"); auto ctrq = get_array("trq"); auto cvcm = get_array("vcm"); EXPECT_NEAR(cang[0][0], -0.01906982, EPSILON); EXPECT_NEAR(cang[0][1], -0.02814532, EPSILON); EXPECT_NEAR(cang[0][2], -0.03357393, EPSILON); EXPECT_NEAR(cang[5][0], 0.00767837, EPSILON); EXPECT_NEAR(cang[5][1], -0.00303138, EPSILON); EXPECT_NEAR(cang[5][2], 0.00740977, EPSILON); EXPECT_NEAR(ccom[1][0], 2.27051374, EPSILON); EXPECT_NEAR(ccom[1][1], -1.21038876, EPSILON); EXPECT_NEAR(ccom[1][2], -0.58581655, EPSILON); EXPECT_NEAR(ccom[5][0], -1.98284693, EPSILON); EXPECT_NEAR(ccom[5][1], -4.17351226, EPSILON); EXPECT_NEAR(ccom[5][2], 2.04850072, EPSILON); EXPECT_NEAR(cmom[2][0], 4.28810281, EPSILON); EXPECT_NEAR(cmom[2][1], 4.99562488, EPSILON); EXPECT_NEAR(cmom[2][2], 5.34954800, EPSILON); EXPECT_NEAR(cmom[5][0], 3.06867233, EPSILON); EXPECT_NEAR(cmom[5][1], 5.24202887, EPSILON); EXPECT_NEAR(cmom[5][2], 6.06478557, EPSILON); EXPECT_NEAR(comg[3][0], -0.00349423, EPSILON); EXPECT_NEAR(comg[3][1], -0.00025062, EPSILON); EXPECT_NEAR(comg[3][2], -0.00323573, EPSILON); EXPECT_NEAR(comg[5][0], 0.00437315, EPSILON); EXPECT_NEAR(comg[5][1], 0.00029335, EPSILON); EXPECT_NEAR(comg[5][2], 0.00268517, EPSILON); EXPECT_NEAR(ctrq[4][0], -0.94086086, EPSILON); EXPECT_NEAR(ctrq[4][1], 0.56227336, EPSILON); EXPECT_NEAR(ctrq[4][2], 0.75139995, EPSILON); EXPECT_NEAR(ctrq[5][0], -0.07066910, EPSILON); EXPECT_NEAR(ctrq[5][1], -0.58556032, EPSILON); EXPECT_NEAR(ctrq[5][2], -0.81513604, EPSILON); EXPECT_NEAR(cvcm[0][0], -0.00011274, EPSILON); EXPECT_NEAR(cvcm[0][1], 0.00071452, EPSILON); EXPECT_NEAR(cvcm[0][2], -0.00017908, EPSILON); EXPECT_NEAR(cvcm[5][0], -0.00063326, EPSILON); EXPECT_NEAR(cvcm[5][1], 0.00007092, EPSILON); EXPECT_NEAR(cvcm[5][2], 0.00045545, EPSILON); EXPECT_NEAR(cdip[0][3], 0.35912150, EPSILON); EXPECT_NEAR(cdip[1][3], 0.68453713, EPSILON); EXPECT_NEAR(cdip[2][3], 0.50272643, EPSILON); EXPECT_NEAR(cdip[3][3], 0.50845862, EPSILON); EXPECT_NEAR(cdip[4][3], 0.49757365, EPSILON); EXPECT_NEAR(cdip[5][3], 0.49105019, EPSILON); EXPECT_NEAR(cgyr[0], 1.48351858, EPSILON); EXPECT_NEAR(cgyr[1], 1.56649567, EPSILON); EXPECT_NEAR(cgyr[2], 0.55196552, EPSILON); EXPECT_NEAR(cgyr[3], 0.54573649, EPSILON); EXPECT_NEAR(cgyr[4], 0.54793875, EPSILON); EXPECT_NEAR(cgyr[5], 0.54708204, EPSILON); EXPECT_NEAR(ctmp[0], 1.08268576, EPSILON); EXPECT_NEAR(ctmp[1], 1.61905718, EPSILON); EXPECT_NEAR(ctmp[2], 1.41991778, EPSILON); EXPECT_NEAR(ctmp[3], 0.55484671, EPSILON); EXPECT_NEAR(ctmp[4], -0.06062938, EPSILON); EXPECT_NEAR(ctmp[5], -0.09219489, EPSILON); } TEST_F(ComputeChunkTest, ChunkSpreadGlobal) { if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP(); BEGIN_HIDE_OUTPUT(); command("pair_style lj/cut/coul/cut 10.0"); command("pair_coeff * * 0.01 3.0"); command("bond_style harmonic"); command("bond_coeff * 100.0 1.5"); command("compute gyr all gyration/chunk mols"); command("compute spr all chunk/spread/atom mols c_gyr"); command("compute glb all global/atom c_mols c_gyr"); command("variable odd atom ((id+1)%2)+1"); command("compute odd all global/atom v_odd c_gyr"); command("fix ave all ave/atom 1 1 1 c_spr c_glb c_odd"); command("run 0 post no"); END_HIDE_OUTPUT(); const int natoms = lammps_get_natoms(lmp); auto cgyr = get_vector("gyr"); auto cspr = get_peratom("spr"); auto cglb = get_peratom("glb"); auto codd = get_peratom("odd"); auto ctag = get_peratom("tags"); for (int i = 0; i < natoms; ++i) { EXPECT_EQ(cspr[i], cgyr[chunkmol[(int)ctag[i]] - 1]); EXPECT_EQ(cglb[i], cgyr[chunkmol[(int)ctag[i]] - 1]); EXPECT_EQ(codd[i], cgyr[(((int)ctag[i] + 1) % 2)]); } } } // namespace LAMMPS_NS int main(int argc, char **argv) { MPI_Init(&argc, &argv); ::testing::InitGoogleMock(&argc, argv); if (LAMMPS_NS::platform::mpi_vendor() == "Open MPI" && !Info::has_exceptions()) std::cout << "Warning: using OpenMPI without exceptions. Death tests will be skipped\n"; // handle arguments passed via environment variable if (const char *var = getenv("TEST_ARGS")) { std::vector env = LAMMPS_NS::utils::split_words(var); for (auto arg : env) { if (arg == "-v") { verbose = true; } } } if ((argc > 1) && (strcmp(argv[1], "-v") == 0)) verbose = true; int rv = RUN_ALL_TESTS(); MPI_Finalize(); return rv; }