// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "gridcomm_kokkos.h" #include "comm.h" #include "irregular.h" #include "kokkos.h" #include "kokkos_base_fft.h" #include "kspace.h" #include "memory_kokkos.h" using namespace LAMMPS_NS; enum{REGULAR,TILED}; #define DELTA 16 /* ---------------------------------------------------------------------- NOTES tiled implementation only currently works for RCB, not general tiled b/c RCB tree is used to find neighboring tiles if o indices for ghosts are < 0 or hi indices are >= N, then grid is treated as periodic in that dimension, communication is done across the periodic boundaries ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- constructor called by all classes except MSM gcomm = world communicator gn xyz = size of global grid i xyz lohi = portion of global grid this proc owns, 0 <= index < N o xyz lohi = owned grid portion + ghost grid cells needed in all directions if o indices are < 0 or hi indices are >= N, then grid is treated as periodic in that dimension, communication is done across the periodic boundaries ------------------------------------------------------------------------- */ template GridCommKokkos::GridCommKokkos(LAMMPS *lmp, MPI_Comm gcomm, int gnx, int gny, int gnz, int ixlo, int ixhi, int iylo, int iyhi, int izlo, int izhi, int oxlo, int oxhi, int oylo, int oyhi, int ozlo, int ozhi) : GridComm(lmp, gcomm, gnx, gny, gnz, ixlo,ixhi, iylo, iyhi, izlo, izhi, oxlo, oxhi, oylo, oyhi, ozlo, ozhi) { } /* ---------------------------------------------------------------------- constructor called by MSM gcomm = world communicator or sub-communicator for a hierarchical grid flag = 1 if e xyz lohi values = larger grid stored by caller in gcomm = world flag = 2 if e xyz lohi values = 6 neighbor procs in gcomm gn xyz = size of global grid i xyz lohi = portion of global grid this proc owns, 0 <= index < N o xyz lohi = owned grid portion + ghost grid cells needed in all directions e xyz lohi for flag = 1: extent of larger grid stored by caller e xyz lohi for flag = 2: 6 neighbor procs ------------------------------------------------------------------------- */ template GridCommKokkos::GridCommKokkos(LAMMPS *lmp, MPI_Comm gcomm, int /*flag*/, int gnx, int gny, int gnz, int ixlo, int ixhi, int iylo, int iyhi, int izlo, int izhi, int oxlo, int oxhi, int oylo, int oyhi, int ozlo, int ozhi, int /*exlo*/, int /*exhi*/, int /*eylo*/, int /*eyhi*/, int /*ezlo*/, int /*ezhi*/) : GridComm(lmp, gcomm, gnx, gny, gnz, ixlo,ixhi, iylo, iyhi, izlo, izhi, oxlo, oxhi, oylo, oyhi, ozlo, ozhi) { } /* ---------------------------------------------------------------------- */ template GridCommKokkos::~GridCommKokkos() { // regular comm data struct for (int i = 0; i < nswap; i++) { swap[i].packlist = nullptr; swap[i].unpacklist = nullptr; } // tiled comm data structs for (int i = 0; i < nsend; i++) send[i].packlist = nullptr; for (int i = 0; i < nrecv; i++) recv[i].unpacklist = nullptr; for (int i = 0; i < ncopy; i++) { copy[i].packlist = nullptr; copy[i].unpacklist = nullptr; } } /* ---------------------------------------------------------------------- setup comm for a regular grid of procs each proc has 6 neighbors comm pattern = series of swaps with one of those 6 procs can be multiple swaps with same proc if ghost extent is large swap may not be symmetric if both procs do not need same layers of ghosts all procs perform same # of swaps in a direction, even if some don't need it ------------------------------------------------------------------------- */ template void GridCommKokkos::setup_regular(int &nbuf1, int &nbuf2) { int nsent,sendfirst,sendlast,recvfirst,recvlast; int sendplanes,recvplanes; int notdoneme,notdone; // notify 6 neighbor procs how many ghost grid planes I need from them // ghost xyz lo = # of my lower grid planes that proc xyz lo needs as its ghosts // ghost xyz hi = # of my upper grid planes that proc xyz hi needs as its ghosts // if this proc is its own neighbor across periodic bounary, value is from self int nplanes = inxlo - outxlo; if (procxlo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procxlo,0, &ghostxhi,1,MPI_INT,procxhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostxhi = nplanes; nplanes = outxhi - inxhi; if (procxhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procxhi,0, &ghostxlo,1,MPI_INT,procxlo,0,gridcomm,MPI_STATUS_IGNORE); else ghostxlo = nplanes; nplanes = inylo - outylo; if (procylo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procylo,0, &ghostyhi,1,MPI_INT,procyhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostyhi = nplanes; nplanes = outyhi - inyhi; if (procyhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procyhi,0, &ghostylo,1,MPI_INT,procylo,0,gridcomm,MPI_STATUS_IGNORE); else ghostylo = nplanes; nplanes = inzlo - outzlo; if (proczlo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,proczlo,0, &ghostzhi,1,MPI_INT,proczhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostzhi = nplanes; nplanes = outzhi - inzhi; if (proczhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,proczhi,0, &ghostzlo,1,MPI_INT,proczlo,0,gridcomm,MPI_STATUS_IGNORE); else ghostzlo = nplanes; // setup swaps = exchange of grid data with one of 6 neighobr procs // can be more than one in a direction if ghost region extends beyond neigh proc // all procs have same swap count, but swapsize npack/nunpack can be empty nswap = 0; // send own grid pts to -x processor, recv ghost grid pts from +x processor nsent = 0; sendfirst = inxlo; sendlast = inxhi; recvfirst = inxhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procxlo; swap[nswap].recvproc = procxhi; sendplanes = MIN(sendlast-sendfirst+1,ghostxlo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, sendfirst,sendfirst+sendplanes-1,inylo,inyhi,inzlo,inzhi); if (procxlo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procxlo,0, &recvplanes,1,MPI_INT,procxhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, recvfirst,recvfirst+recvplanes-1,inylo,inyhi,inzlo,inzhi); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostxlo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +x processor, recv ghost grid pts from -x processor nsent = 0; sendfirst = inxlo; sendlast = inxhi; recvlast = inxlo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procxhi; swap[nswap].recvproc = procxlo; sendplanes = MIN(sendlast-sendfirst+1,ghostxhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, sendlast-sendplanes+1,sendlast,inylo,inyhi,inzlo,inzhi); if (procxhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procxhi,0, &recvplanes,1,MPI_INT,procxlo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, recvlast-recvplanes+1,recvlast,inylo,inyhi,inzlo,inzhi); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostxhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to -y processor, recv ghost grid pts from +y processor nsent = 0; sendfirst = inylo; sendlast = inyhi; recvfirst = inyhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procylo; swap[nswap].recvproc = procyhi; sendplanes = MIN(sendlast-sendfirst+1,ghostylo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,sendfirst,sendfirst+sendplanes-1,inzlo,inzhi); if (procylo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procylo,0, &recvplanes,1,MPI_INT,procyhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,recvfirst,recvfirst+recvplanes-1,inzlo,inzhi); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostylo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +y processor, recv ghost grid pts from -y processor nsent = 0; sendfirst = inylo; sendlast = inyhi; recvlast = inylo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procyhi; swap[nswap].recvproc = procylo; sendplanes = MIN(sendlast-sendfirst+1,ghostyhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,sendlast-sendplanes+1,sendlast,inzlo,inzhi); if (procyhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procyhi,0, &recvplanes,1,MPI_INT,procylo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,recvlast-recvplanes+1,recvlast,inzlo,inzhi); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostyhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to -z processor, recv ghost grid pts from +z processor nsent = 0; sendfirst = inzlo; sendlast = inzhi; recvfirst = inzhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = proczlo; swap[nswap].recvproc = proczhi; sendplanes = MIN(sendlast-sendfirst+1,ghostzlo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,outylo,outyhi,sendfirst,sendfirst+sendplanes-1); if (proczlo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,proczlo,0, &recvplanes,1,MPI_INT,proczhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,outylo,outyhi,recvfirst,recvfirst+recvplanes-1); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostzlo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +z processor, recv ghost grid pts from -z processor nsent = 0; sendfirst = inzlo; sendlast = inzhi; recvlast = inzlo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = proczhi; swap[nswap].recvproc = proczlo; sendplanes = MIN(sendlast-sendfirst+1,ghostzhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,outylo,outyhi,sendlast-sendplanes+1,sendlast); if (proczhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,proczhi,0, &recvplanes,1,MPI_INT,proczlo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,outylo,outyhi,recvlast-recvplanes+1,recvlast); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostzhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // ngrid = max of any forward/reverse pack/unpack grid points int ngrid = 0; for (int i = 0; i < nswap; i++) { ngrid = MAX(ngrid,swap[i].npack); ngrid = MAX(ngrid,swap[i].nunpack); } nbuf1 = nbuf2 = ngrid; } /* ---------------------------------------------------------------------- setup comm for RCB tiled proc domains each proc has arbitrary # of neighbors that overlap its ghost extent identify which procs will send me ghost cells, and vice versa may not be symmetric if both procs do not need same layers of ghosts comm pattern = post recvs for all my ghosts, send my owned, wait on recvs no exchanges by dimension, unlike CommTiled forward/reverse comm of particles ------------------------------------------------------------------------- */ template void GridCommKokkos::setup_tiled(int &nbuf1, int &nbuf2) { int i,m; double xlo,xhi,ylo,yhi,zlo,zhi; int ghostbox[6],pbc[3]; // setup RCB tree of cut info for grid // access CommTiled to get cut dimension // cut = this proc's inlo in that dim // dim is -1 for proc 0, but never accessed rcbinfo = (RCBinfo *) memory->smalloc(nprocs*sizeof(RCBinfo),"GridComm:rcbinfo"); RCBinfo rcbone; rcbone.dim = comm->rcbcutdim; if (rcbone.dim <= 0) rcbone.cut = inxlo; else if (rcbone.dim == 1) rcbone.cut = inylo; else if (rcbone.dim == 2) rcbone.cut = inzlo; MPI_Allgather(&rcbone,sizeof(RCBinfo),MPI_CHAR, rcbinfo,sizeof(RCBinfo),MPI_CHAR,gridcomm); // find overlaps of my extended ghost box with all other procs // accounts for crossings of periodic boundaries // noverlap = # of overlaps, including self // overlap = vector of overlap info using Overlap data struct ghostbox[0] = outxlo; ghostbox[1] = outxhi; ghostbox[2] = outylo; ghostbox[3] = outyhi; ghostbox[4] = outzlo; ghostbox[5] = outzhi; pbc[0] = pbc[1] = pbc[2] = 0; memory->create(overlap_procs,nprocs,"GridComm:overlap_procs"); noverlap = maxoverlap = 0; overlap = nullptr; ghost_box_drop(ghostbox,pbc); // send each proc an overlap message // content: me, index of my overlap, box that overlaps with its owned cells // ncopy = # of overlaps with myself, across a periodic boundary int *proclist; memory->create(proclist,noverlap,"GridComm:proclist"); srequest = (Request *) memory->smalloc(noverlap*sizeof(Request),"GridComm:srequest"); int nsend_request = 0; ncopy = 0; for (m = 0; m < noverlap; m++) { if (overlap[m].proc == me) ncopy++; else { proclist[nsend_request] = overlap[m].proc; srequest[nsend_request].sender = me; srequest[nsend_request].index = m; for (i = 0; i < 6; i++) srequest[nsend_request].box[i] = overlap[m].box[i]; nsend_request++; } } Irregular *irregular = new Irregular(lmp); int nrecv_request = irregular->create_data(nsend_request,proclist,1); Request *rrequest = (Request *) memory->smalloc(nrecv_request*sizeof(Request),"GridComm:rrequest"); irregular->exchange_data((char *) srequest,sizeof(Request),(char *) rrequest); irregular->destroy_data(); // compute overlaps between received ghost boxes and my owned box // overlap box used to setup my Send data struct and respond to requests send = (Send *) memory->smalloc(nrecv_request*sizeof(Send),"GridComm:send"); k_send_packlist = DAT::tdual_int_2d("GridComm:send_packlist",nrecv_request,k_send_packlist.extent(1)); sresponse = (Response *) memory->smalloc(nrecv_request*sizeof(Response),"GridComm:sresponse"); memory->destroy(proclist); memory->create(proclist,nrecv_request,"GridComm:proclist"); for (m = 0; m < nrecv_request; m++) { send[m].proc = rrequest[m].sender; xlo = MAX(rrequest[m].box[0],inxlo); xhi = MIN(rrequest[m].box[1],inxhi); ylo = MAX(rrequest[m].box[2],inylo); yhi = MIN(rrequest[m].box[3],inyhi); zlo = MAX(rrequest[m].box[4],inzlo); zhi = MIN(rrequest[m].box[5],inzhi); send[m].npack = indices(k_send_packlist,m,xlo,xhi,ylo,yhi,zlo,zhi); proclist[m] = rrequest[m].sender; sresponse[m].index = rrequest[m].index; sresponse[m].box[0] = xlo; sresponse[m].box[1] = xhi; sresponse[m].box[2] = ylo; sresponse[m].box[3] = yhi; sresponse[m].box[4] = zlo; sresponse[m].box[5] = zhi; } nsend = nrecv_request; // reply to each Request message with a Response message // content: index for the overlap on requestor, overlap box on my owned grid int nsend_response = nrecv_request; int nrecv_response = irregular->create_data(nsend_response,proclist,1); Response *rresponse = (Response *) memory->smalloc(nrecv_response*sizeof(Response),"GridComm:rresponse"); irregular->exchange_data((char *) sresponse,sizeof(Response),(char *) rresponse); irregular->destroy_data(); delete irregular; // process received responses // box used to setup my Recv data struct after unwrapping via PBC // adjacent = 0 if any box of ghost cells does not adjoin my owned cells recv = (Recv *) memory->smalloc(nrecv_response*sizeof(Recv),"GridComm:recv"); k_recv_unpacklist = DAT::tdual_int_2d("GridComm:recv_unpacklist",nrecv_response,k_recv_unpacklist.extent(1)); adjacent = 1; for (i = 0; i < nrecv_response; i++) { m = rresponse[i].index; recv[i].proc = overlap[m].proc; xlo = rresponse[i].box[0] + overlap[m].pbc[0] * nx; xhi = rresponse[i].box[1] + overlap[m].pbc[0] * nx; ylo = rresponse[i].box[2] + overlap[m].pbc[1] * ny; yhi = rresponse[i].box[3] + overlap[m].pbc[1] * ny; zlo = rresponse[i].box[4] + overlap[m].pbc[2] * nz; zhi = rresponse[i].box[5] + overlap[m].pbc[2] * nz; recv[i].nunpack = indices(k_recv_unpacklist,i,xlo,xhi,ylo,yhi,zlo,zhi); if (xlo != inxhi+1 && xhi != inxlo-1 && ylo != inyhi+1 && yhi != inylo-1 && zlo != inzhi+1 && zhi != inzlo-1) adjacent = 0; } nrecv = nrecv_response; // create Copy data struct from overlaps with self copy = (Copy *) memory->smalloc(ncopy*sizeof(Copy),"GridComm:copy"); k_copy_packlist = DAT::tdual_int_2d("GridComm:copy_packlist",ncopy,k_copy_packlist.extent(1)); k_copy_unpacklist = DAT::tdual_int_2d("GridComm:copy_unpacklist",ncopy,k_copy_unpacklist.extent(1)); ncopy = 0; for (m = 0; m < noverlap; m++) { if (overlap[m].proc != me) continue; xlo = overlap[m].box[0]; xhi = overlap[m].box[1]; ylo = overlap[m].box[2]; yhi = overlap[m].box[3]; zlo = overlap[m].box[4]; zhi = overlap[m].box[5]; copy[ncopy].npack = indices(k_copy_packlist,ncopy,xlo,xhi,ylo,yhi,zlo,zhi); xlo = overlap[m].box[0] + overlap[m].pbc[0] * nx; xhi = overlap[m].box[1] + overlap[m].pbc[0] * nx; ylo = overlap[m].box[2] + overlap[m].pbc[1] * ny; yhi = overlap[m].box[3] + overlap[m].pbc[1] * ny; zlo = overlap[m].box[4] + overlap[m].pbc[2] * nz; zhi = overlap[m].box[5] + overlap[m].pbc[2] * nz; copy[ncopy].nunpack = indices(k_copy_unpacklist,ncopy,xlo,xhi,ylo,yhi,zlo,zhi); ncopy++; } // set offsets for received data int offset = 0; for (m = 0; m < nsend; m++) { send[m].offset = offset; offset += send[m].npack; } offset = 0; for (m = 0; m < nrecv; m++) { recv[m].offset = offset; offset += recv[m].nunpack; } // length of MPI requests vector is max of nsend, nrecv int nrequest = MAX(nsend,nrecv); requests = new MPI_Request[nrequest]; // clean-up memory->sfree(rcbinfo); memory->destroy(proclist); memory->destroy(overlap_procs); memory->sfree(overlap); memory->sfree(srequest); memory->sfree(rrequest); memory->sfree(sresponse); memory->sfree(rresponse); // nbuf1 = largest pack or unpack in any Send or Recv or Copy // nbuf2 = larget of sum of all packs or unpacks in Send or Recv nbuf1 = 0; for (m = 0; m < ncopy; m++) { nbuf1 = MAX(nbuf1,copy[m].npack); nbuf1 = MAX(nbuf1,copy[m].nunpack); } int nbufs = 0; for (m = 0; m < nsend; m++) { nbuf1 = MAX(nbuf1,send[m].npack); nbufs += send[m].npack; } int nbufr = 0; for (m = 0; m < nrecv; m++) { nbuf1 = MAX(nbuf1,recv[m].nunpack); nbufr += recv[m].nunpack; } nbuf2 = MAX(nbufs,nbufr); } /* ---------------------------------------------------------------------- forward comm of my owned cells to other's ghost cells ------------------------------------------------------------------------- */ template void GridCommKokkos::forward_comm_kspace(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { if (layout == REGULAR) forward_comm_kspace_regular(kspace,nper,which,k_buf1,k_buf2,datatype); else forward_comm_kspace_tiled(kspace,nper,which,k_buf1,k_buf2,datatype); } /* ---------------------------------------------------------------------- forward comm on regular grid of procs via list of swaps with 6 neighbor procs ------------------------------------------------------------------------- */ template void GridCommKokkos:: forward_comm_kspace_regular(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int m; MPI_Request request; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } for (m = 0; m < nswap; m++) { if (swap[m].sendproc == me) kspaceKKBase->pack_forward_grid_kokkos(which,k_buf2,swap[m].npack,k_swap_packlist,m); else kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,swap[m].npack,k_swap_packlist,m); DeviceType().fence(); if (swap[m].sendproc != me) { if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } if (swap[m].nunpack) MPI_Irecv(buf2,nper*swap[m].nunpack,datatype, swap[m].recvproc,0,gridcomm,&request); if (swap[m].npack) MPI_Send(buf1,nper*swap[m].npack,datatype, swap[m].sendproc,0,gridcomm); if (swap[m].nunpack) MPI_Wait(&request,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } } kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf2,0,swap[m].nunpack,k_swap_unpacklist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- forward comm on tiled grid decomp via Send/Recv lists of each neighbor proc ------------------------------------------------------------------------- */ template void GridCommKokkos:: forward_comm_kspace_tiled(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int i,m,offset; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } // post all receives for (m = 0; m < nrecv; m++) { offset = nper * recv[m].offset; MPI_Irecv(&buf2[offset],nper*recv[m].nunpack,datatype, recv[m].proc,0,gridcomm,&requests[m]); } // perform all sends to other procs for (m = 0; m < nsend; m++) { kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,send[m].npack,k_send_packlist,m); DeviceType().fence(); if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } MPI_Send(buf1,nper*send[m].npack,datatype,send[m].proc,0,gridcomm); } // perform all copies to self for (m = 0; m < ncopy; m++) { kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,copy[m].npack,k_copy_packlist,m); kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf1,0,copy[m].nunpack,k_copy_unpacklist,m); } // unpack all received data for (i = 0; i < nrecv; i++) { MPI_Waitany(nrecv,requests,&m,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } offset = nper * recv[m].offset; kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf2,offset, recv[m].nunpack,k_recv_unpacklist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- reverse comm of my ghost cells to sum to owner cells ------------------------------------------------------------------------- */ template void GridCommKokkos::reverse_comm_kspace(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { if (layout == REGULAR) reverse_comm_kspace_regular(kspace,nper,which,k_buf1,k_buf2,datatype); else reverse_comm_kspace_tiled(kspace,nper,which,k_buf1,k_buf2,datatype); } /* ---------------------------------------------------------------------- reverse comm on regular grid of procs via list of swaps with 6 neighbor procs ------------------------------------------------------------------------- */ template void GridCommKokkos:: reverse_comm_kspace_regular(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int m; MPI_Request request; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } for (m = nswap-1; m >= 0; m--) { if (swap[m].recvproc == me) kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf2,swap[m].nunpack,k_swap_unpacklist,m); else kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,swap[m].nunpack,k_swap_unpacklist,m); DeviceType().fence(); if (swap[m].recvproc != me) { if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } if (swap[m].npack) MPI_Irecv(buf2,nper*swap[m].npack,datatype, swap[m].sendproc,0,gridcomm,&request); if (swap[m].nunpack) MPI_Send(buf1,nper*swap[m].nunpack,datatype, swap[m].recvproc,0,gridcomm); if (swap[m].npack) MPI_Wait(&request,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } } kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf2,0,swap[m].npack,k_swap_packlist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- reverse comm on tiled grid decomp via Send/Recv lists of each neighbor proc ------------------------------------------------------------------------- */ template void GridCommKokkos:: reverse_comm_kspace_tiled(KSpace *kspace, int nper, int which, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int i,m,offset; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } // post all receives for (m = 0; m < nsend; m++) { offset = nper * send[m].offset; MPI_Irecv(&buf2[offset],nper*send[m].npack,datatype, send[m].proc,0,gridcomm,&requests[m]); } // perform all sends to other procs for (m = 0; m < nrecv; m++) { kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,recv[m].nunpack,k_recv_unpacklist,m); DeviceType().fence(); if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } MPI_Send(buf1,nper*recv[m].nunpack,datatype,recv[m].proc,0,gridcomm); } // perform all copies to self for (m = 0; m < ncopy; m++) { kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,copy[m].nunpack,k_copy_unpacklist,m); kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf1,0,copy[m].npack,k_copy_packlist,m); } // unpack all received data for (i = 0; i < nsend; i++) { MPI_Waitany(nsend,requests,&m,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } offset = nper * send[m].offset; kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf2,offset, send[m].npack,k_send_packlist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- create swap stencil for grid own/ghost communication swaps covers all 3 dimensions and both directions swaps cover multiple iterations in a direction if need grid pts from further away than nearest-neighbor proc same swap list used by forward and reverse communication ------------------------------------------------------------------------- */ template void GridCommKokkos::grow_swap() { maxswap += DELTA; swap = (Swap *) memory->srealloc(swap,maxswap*sizeof(Swap),"GridComm:swap"); if (!k_swap_packlist.d_view.data()) { k_swap_packlist = DAT::tdual_int_2d("GridComm:swap_packlist",maxswap,k_swap_packlist.extent(1)); k_swap_unpacklist = DAT::tdual_int_2d("GridComm:swap_unpacklist",maxswap,k_swap_unpacklist.extent(1)); } else { k_swap_packlist.resize(maxswap,k_swap_packlist.extent(1)); k_swap_unpacklist.resize(maxswap,k_swap_unpacklist.extent(1)); } } /* ---------------------------------------------------------------------- create 1d list of offsets into 3d array section (xlo:xhi,ylo:yhi,zlo:zhi) assume 3d array is allocated as (fullxlo:fullxhi,fullylo:fullyhi,fullzlo:fullzhi) ------------------------------------------------------------------------- */ template int GridCommKokkos::indices(DAT::tdual_int_2d &k_list, int index, int xlo, int xhi, int ylo, int yhi, int zlo, int zhi) { int nmax = (xhi-xlo+1) * (yhi-ylo+1) * (zhi-zlo+1); if (k_list.extent(1) < nmax) k_list.resize(k_list.extent(0),nmax); if (nmax == 0) return 0; int nx = (fullxhi-fullxlo+1); int ny = (fullyhi-fullylo+1); k_list.sync(); int n = 0; int ix,iy,iz; for (iz = zlo; iz <= zhi; iz++) for (iy = ylo; iy <= yhi; iy++) for (ix = xlo; ix <= xhi; ix++) k_list.h_view(index,n++) = (iz-fullzlo)*ny*nx + (iy-fullylo)*nx + (ix-fullxlo); k_list.modify(); k_list.sync(); return nmax; } namespace LAMMPS_NS { template class GridCommKokkos; #ifdef LMP_KOKKOS_GPU template class GridCommKokkos; #endif }