/* //@HEADER // ************************************************************************ // // Kokkos v. 3.0 // Copyright (2020) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #include #include #include #include #include #include #if defined(KOKKOS_ENABLE_CUDA) || defined(KOKKOS_ENABLE_HIP) || \ defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_OPENMPTARGET) || \ defined(KOKKOS_ENABLE_OPENACC) #else #define MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS #endif // WORKAROUND icpx changing default FP model when optimization level is >= 1 // using -fp-model=precise works too #if defined(__INTEL_LLVM_COMPILER) #define KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL #endif // clang-format off template struct math_unary_function_return_type; // Floating-point types template <> struct math_unary_function_return_type< float> { using type = float; }; template <> struct math_unary_function_return_type< double> { using type = double; }; #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS template <> struct math_unary_function_return_type { using type = long double; }; #endif // Integral types template <> struct math_unary_function_return_type< bool> { using type = double; }; template <> struct math_unary_function_return_type< short> { using type = double; }; template <> struct math_unary_function_return_type< unsigned short> { using type = double; }; template <> struct math_unary_function_return_type< int> { using type = double; }; template <> struct math_unary_function_return_type< unsigned int> { using type = double; }; template <> struct math_unary_function_return_type< long> { using type = double; }; template <> struct math_unary_function_return_type< unsigned long> { using type = double; }; template <> struct math_unary_function_return_type< long long> { using type = double; }; template <> struct math_unary_function_return_type { using type = double; }; template using math_unary_function_return_type_t = typename math_unary_function_return_type::type; template struct math_binary_function_return_type; template <> struct math_binary_function_return_type< float, float> { using type = float; }; template <> struct math_binary_function_return_type< float, double> { using type = double; }; template <> struct math_binary_function_return_type< float, bool> { using type = double; }; template <> struct math_binary_function_return_type< float, short> { using type = double; }; template <> struct math_binary_function_return_type< float, int> { using type = double; }; template <> struct math_binary_function_return_type< float, long> { using type = double; }; template <> struct math_binary_function_return_type< float, long long> { using type = double; }; template <> struct math_binary_function_return_type< float, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< float, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< float, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< float, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< double, float> { using type = double; }; template <> struct math_binary_function_return_type< double, double> { using type = double; }; template <> struct math_binary_function_return_type< double, bool> { using type = double; }; template <> struct math_binary_function_return_type< double, short> { using type = double; }; template <> struct math_binary_function_return_type< double, int> { using type = double; }; template <> struct math_binary_function_return_type< double, long> { using type = double; }; template <> struct math_binary_function_return_type< double, long long> { using type = double; }; template <> struct math_binary_function_return_type< double, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< double, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< double, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< double, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< short, float> { using type = double; }; template <> struct math_binary_function_return_type< short, double> { using type = double; }; template <> struct math_binary_function_return_type< short, bool> { using type = double; }; template <> struct math_binary_function_return_type< short, short> { using type = double; }; template <> struct math_binary_function_return_type< short, int> { using type = double; }; template <> struct math_binary_function_return_type< short, long> { using type = double; }; template <> struct math_binary_function_return_type< short, long long> { using type = double; }; template <> struct math_binary_function_return_type< short, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< short, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< short, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< short, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< int, float> { using type = double; }; template <> struct math_binary_function_return_type< int, double> { using type = double; }; template <> struct math_binary_function_return_type< int, bool> { using type = double; }; template <> struct math_binary_function_return_type< int, short> { using type = double; }; template <> struct math_binary_function_return_type< int, int> { using type = double; }; template <> struct math_binary_function_return_type< int, long> { using type = double; }; template <> struct math_binary_function_return_type< int, long long> { using type = double; }; template <> struct math_binary_function_return_type< int, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< int, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< int, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< int, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< long, float> { using type = double; }; template <> struct math_binary_function_return_type< long, double> { using type = double; }; template <> struct math_binary_function_return_type< long, bool> { using type = double; }; template <> struct math_binary_function_return_type< long, short> { using type = double; }; template <> struct math_binary_function_return_type< long, int> { using type = double; }; template <> struct math_binary_function_return_type< long, long> { using type = double; }; template <> struct math_binary_function_return_type< long, long long> { using type = double; }; template <> struct math_binary_function_return_type< long, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< long, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< long, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< long, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< long long, float> { using type = double; }; template <> struct math_binary_function_return_type< long long, double> { using type = double; }; template <> struct math_binary_function_return_type< long long, bool> { using type = double; }; template <> struct math_binary_function_return_type< long long, short> { using type = double; }; template <> struct math_binary_function_return_type< long long, int> { using type = double; }; template <> struct math_binary_function_return_type< long long, long> { using type = double; }; template <> struct math_binary_function_return_type< long long, long long> { using type = double; }; template <> struct math_binary_function_return_type< long long, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< long long, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< long long, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< long long, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, float> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, double> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, bool> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned short, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, float> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, double> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, bool> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned int, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, float> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, double> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, bool> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, long long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, unsigned short> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, unsigned int> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, unsigned long> { using type = double; }; template <> struct math_binary_function_return_type< unsigned long, unsigned long long> { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; template <> struct math_binary_function_return_type { using type = double; }; #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS template <> struct math_binary_function_return_type< float, long double> { using type = long double; }; template <> struct math_binary_function_return_type< double, long double> { using type = long double; }; template <> struct math_binary_function_return_type< long double, float> { using type = long double; }; template <> struct math_binary_function_return_type< long double, double> { using type = long double; }; template <> struct math_binary_function_return_type< long double, long double> { using type = long double; }; template <> struct math_binary_function_return_type< long double, bool> { using type = long double; }; template <> struct math_binary_function_return_type< long double, short> { using type = long double; }; template <> struct math_binary_function_return_type< long double, int> { using type = long double; }; template <> struct math_binary_function_return_type< long double, long> { using type = long double; }; template <> struct math_binary_function_return_type< long double, long long> { using type = long double; }; template <> struct math_binary_function_return_type< long double, unsigned short> { using type = long double; }; template <> struct math_binary_function_return_type< long double, unsigned int> { using type = long double; }; template <> struct math_binary_function_return_type< long double, unsigned long> { using type = long double; }; template <> struct math_binary_function_return_type< long double, unsigned long long> { using type = long double; }; template <> struct math_binary_function_return_type< short, long double> { using type = long double; }; template <> struct math_binary_function_return_type< int, long double> { using type = long double; }; template <> struct math_binary_function_return_type< long, long double> { using type = long double; }; template <> struct math_binary_function_return_type< long long, long double> { using type = long double; }; template <> struct math_binary_function_return_type< unsigned short, long double> { using type = long double; }; template <> struct math_binary_function_return_type< unsigned int, long double> { using type = long double; }; template <> struct math_binary_function_return_type< unsigned long, long double> { using type = long double; }; template <> struct math_binary_function_return_type { using type = long double; }; #endif template using math_binary_function_return_type_t = typename math_binary_function_return_type::type; // clang-format on struct FloatingPointComparison { private: template KOKKOS_FUNCTION double eps(T) const { return DBL_EPSILON; } KOKKOS_FUNCTION double eps(float) const { return FLT_EPSILON; } KOKKOS_FUNCTION double eps(long double) const { return LDBL_EPSILON; } // Using absolute here instead of abs, since we actually test abs ... template KOKKOS_FUNCTION std::enable_if_t::value, T> absolute( T val) const { return val < T(0) ? -val : val; } template KOKKOS_FUNCTION std::enable_if_t::value, T> absolute( T val) const { return val; } public: template KOKKOS_FUNCTION bool compare_near_zero(FPT const& fpv, double ulp) const { auto abs_tol = eps(fpv) * ulp; bool ar = absolute(fpv) < abs_tol; if (!ar) { KOKKOS_IMPL_DO_NOT_USE_PRINTF( "absolute value exceeds tolerance [|%e| > %e]\n", (double)fpv, abs_tol); } return ar; } template KOKKOS_FUNCTION bool compare(Lhs const& lhs, Rhs const& rhs, double ulp) const { if (lhs == 0) { return compare_near_zero(rhs, ulp); } else if (rhs == 0) { return compare_near_zero(lhs, ulp); } else { auto rel_tol = (eps(lhs) < eps(rhs) ? eps(lhs) : eps(rhs)) * ulp; double abs_diff = static_cast(rhs > lhs ? rhs - lhs : lhs - rhs); double min_denom = static_cast( absolute(rhs) < absolute(lhs) ? absolute(rhs) : absolute(lhs)); double rel_diff = abs_diff / min_denom; bool ar = abs_diff == 0 || rel_diff < rel_tol; if (!ar) { KOKKOS_IMPL_DO_NOT_USE_PRINTF( "relative difference exceeds tolerance [%e > %e]\n", (double)rel_diff, rel_tol); } return ar; } } }; template struct math_function_name; #define DEFINE_UNARY_FUNCTION_EVAL(FUNC, ULP_FACTOR) \ struct MathUnaryFunction_##FUNC { \ template \ static KOKKOS_FUNCTION auto eval(T x) { \ static_assert(std::is_same>::value, \ ""); \ return Kokkos::FUNC(x); \ } \ template \ static auto eval_std(T x) { \ static_assert(std::is_same>::value, \ ""); \ return std::FUNC(x); \ } \ static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \ }; \ using kk_##FUNC = MathUnaryFunction_##FUNC; \ template <> \ struct math_function_name { \ static constexpr char name[] = #FUNC; \ }; \ constexpr char math_function_name::name[] #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1 // Generally the expected ULP error should come from here: // https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html // For now 1s largely seem to work ... DEFINE_UNARY_FUNCTION_EVAL(exp, 2); #ifdef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC exp2 not device callable, // workaround computes it via exp DEFINE_UNARY_FUNCTION_EVAL(exp2, 30); #else DEFINE_UNARY_FUNCTION_EVAL(exp2, 2); #endif DEFINE_UNARY_FUNCTION_EVAL(expm1, 2); DEFINE_UNARY_FUNCTION_EVAL(log, 2); DEFINE_UNARY_FUNCTION_EVAL(log10, 2); DEFINE_UNARY_FUNCTION_EVAL(log2, 2); DEFINE_UNARY_FUNCTION_EVAL(log1p, 2); DEFINE_UNARY_FUNCTION_EVAL(sqrt, 2); DEFINE_UNARY_FUNCTION_EVAL(cbrt, 2); DEFINE_UNARY_FUNCTION_EVAL(sin, 2); DEFINE_UNARY_FUNCTION_EVAL(cos, 2); DEFINE_UNARY_FUNCTION_EVAL(tan, 2); DEFINE_UNARY_FUNCTION_EVAL(asin, 2); DEFINE_UNARY_FUNCTION_EVAL(acos, 2); DEFINE_UNARY_FUNCTION_EVAL(atan, 2); DEFINE_UNARY_FUNCTION_EVAL(sinh, 2); DEFINE_UNARY_FUNCTION_EVAL(cosh, 2); DEFINE_UNARY_FUNCTION_EVAL(tanh, 2); DEFINE_UNARY_FUNCTION_EVAL(asinh, 4); DEFINE_UNARY_FUNCTION_EVAL(acosh, 2); DEFINE_UNARY_FUNCTION_EVAL(atanh, 2); #endif #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2 #if defined(__APPLE__) // Apple's standard library implementation seems to have a poor implementation DEFINE_UNARY_FUNCTION_EVAL(erf, 5); #else DEFINE_UNARY_FUNCTION_EVAL(erf, 2); #endif DEFINE_UNARY_FUNCTION_EVAL(erfc, 5); // has a larger error due to some impls doing integer exact. // We cast always to double leading to larger difference when comparing our // tgamma to std::tgamma on the host. DEFINE_UNARY_FUNCTION_EVAL(tgamma, 200); DEFINE_UNARY_FUNCTION_EVAL(lgamma, 2); DEFINE_UNARY_FUNCTION_EVAL(ceil, 2); DEFINE_UNARY_FUNCTION_EVAL(floor, 2); DEFINE_UNARY_FUNCTION_EVAL(trunc, 2); DEFINE_UNARY_FUNCTION_EVAL(round, 1); #ifndef KOKKOS_ENABLE_SYCL DEFINE_UNARY_FUNCTION_EVAL(nearbyint, 2); #endif DEFINE_UNARY_FUNCTION_EVAL(logb, 2); #endif #undef DEFINE_UNARY_FUNCTION_EVAL #define DEFINE_BINARY_FUNCTION_EVAL(FUNC, ULP_FACTOR) \ struct MathBinaryFunction_##FUNC { \ template \ static KOKKOS_FUNCTION auto eval(T x, U y) { \ static_assert( \ std::is_same>::value, \ ""); \ return Kokkos::FUNC(x, y); \ } \ template \ static auto eval_std(T x, U y) { \ static_assert( \ std::is_same>::value, \ ""); \ return std::FUNC(x, y); \ } \ static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \ }; \ using kk_##FUNC = MathBinaryFunction_##FUNC; \ template <> \ struct math_function_name { \ static constexpr char name[] = #FUNC; \ }; \ constexpr char math_function_name::name[] #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1 DEFINE_BINARY_FUNCTION_EVAL(pow, 2); DEFINE_BINARY_FUNCTION_EVAL(hypot, 2); #endif #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2 DEFINE_BINARY_FUNCTION_EVAL(nextafter, 1); DEFINE_BINARY_FUNCTION_EVAL(copysign, 1); #endif #undef DEFINE_BINARY_FUNCTION_EVAL // clang-format off template struct type_helper; #define DEFINE_TYPE_NAME(T) \ template <> struct type_helper { static char const * name() { return #T; } }; DEFINE_TYPE_NAME(bool) DEFINE_TYPE_NAME(int) DEFINE_TYPE_NAME(long) DEFINE_TYPE_NAME(long long) DEFINE_TYPE_NAME(unsigned int) DEFINE_TYPE_NAME(unsigned long) DEFINE_TYPE_NAME(unsigned long long) DEFINE_TYPE_NAME(float) DEFINE_TYPE_NAME(double) DEFINE_TYPE_NAME(long double) #undef DEFINE_TYPE_NAME // clang-format on template > struct TestMathUnaryFunction : FloatingPointComparison { Arg val_[N]; Ret res_[N]; TestMathUnaryFunction(const Arg (&val)[N]) { std::copy(val, val + N, val_); std::transform(val, val + N, res_, [](auto x) { return Func::eval_std(x); }); run(); } void run() { int errors = 0; Kokkos::parallel_reduce(Kokkos::RangePolicy(0, N), *this, errors); ASSERT_EQ(errors, 0) << "Failed check no error for " << math_function_name::name << "(" << type_helper::name() << ")"; } KOKKOS_FUNCTION void operator()(int i, int& e) const { bool ar = compare(Func::eval(val_[i]), res_[i], Func::ulp_factor()); if (!ar) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF( "value at %f which is %f was expected to be %f\n", (double)val_[i], (double)Func::eval(val_[i]), (double)res_[i]); } } }; template void do_test_math_unary_function(const Arg (&x)[N]) { (void)std::initializer_list{ (TestMathUnaryFunction(x), 0)...}; } #define TEST_MATH_FUNCTION(FUNC) \ do_test_math_unary_function template > struct TestMathBinaryFunction : FloatingPointComparison { Arg1 val1_; Arg2 val2_; Ret res_; TestMathBinaryFunction(Arg1 val1, Arg2 val2) : val1_(val1), val2_(val2), res_(Func::eval_std(val1, val2)) { run(); } void run() { int errors = 0; Kokkos::parallel_reduce(Kokkos::RangePolicy(0, 1), *this, errors); ASSERT_EQ(errors, 0) << "Failed check no error for " << math_function_name::name << "(" << type_helper::name() << ", " << type_helper::name() << ")"; } KOKKOS_FUNCTION void operator()(int, int& e) const { bool ar = compare(Func::eval(val1_, val2_), res_, Func::ulp_factor()); if (!ar) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF( "value at %f, %f which is %f was expected to be %f\n", (double)val1_, (double)val2_, (double)Func::eval(val1_, val2_), (double)res_); } } }; template void do_test_math_binary_function(Arg1 arg1, Arg2 arg2) { (void)std::initializer_list{ (TestMathBinaryFunction(arg1, arg2), 0)...}; } #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1 TEST(TEST_CATEGORY, mathematical_functions_trigonometric_functions) { TEST_MATH_FUNCTION(sin)({true, false}); TEST_MATH_FUNCTION(sin)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(sin)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(sin)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(sin)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(sin)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(sin)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(sin)({.1f, .2f, .3f}); TEST_MATH_FUNCTION(sin)({.4, .5, .6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(sin)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(cos)({true, false}); TEST_MATH_FUNCTION(cos)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(cos)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(cos)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(cos)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(cos)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(cos)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(cos)({.1f, .2f, .3f}); TEST_MATH_FUNCTION(cos)({.4, .5, .6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(cos)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(tan)({true, false}); TEST_MATH_FUNCTION(tan)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(tan)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(tan)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(tan)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(tan)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(tan)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(tan)({.1f, .2f, .3f}); TEST_MATH_FUNCTION(tan)({.4, .5, .6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(tan)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(asin)({true, false}); TEST_MATH_FUNCTION(asin)({-1, 0, 1}); TEST_MATH_FUNCTION(asin)({-1l, 0l, 1l}); TEST_MATH_FUNCTION(asin)({-1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(asin)({0u, 1u}); TEST_MATH_FUNCTION(asin)({0ul, 1ul}); TEST_MATH_FUNCTION(asin)({0ull, 1ull}); TEST_MATH_FUNCTION(asin)({-1.f, .9f, -.8f, .7f, -.6f}); TEST_MATH_FUNCTION(asin)({-.5, .4, -.3, .2, -.1, 0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(asin)({-.5l, .3l, 0.l, .2l, .4l, .6l}); #endif TEST_MATH_FUNCTION(acos)({true, false}); TEST_MATH_FUNCTION(acos)({-1, 0, 1}); TEST_MATH_FUNCTION(acos)({-1l, 0l, 1l}); TEST_MATH_FUNCTION(acos)({-1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(acos)({0u, 1u}); TEST_MATH_FUNCTION(acos)({0ul, 1ul}); TEST_MATH_FUNCTION(acos)({0ull, 1ull}); TEST_MATH_FUNCTION(acos)({-1.f, .9f, -.8f, .7f, -.6f}); TEST_MATH_FUNCTION(acos)({-.5, .4, -.3, .2, -.1, 0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(acos)({-.5l, .3l, 0.l, .2l, .4l, .6l}); #endif TEST_MATH_FUNCTION(atan)({true, false}); TEST_MATH_FUNCTION(atan)({-1, 0, 1}); TEST_MATH_FUNCTION(atan)({-1l, 0l, 1l}); TEST_MATH_FUNCTION(atan)({-1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(atan)({0u, 1u}); TEST_MATH_FUNCTION(atan)({0ul, 1ul}); TEST_MATH_FUNCTION(atan)({0ull, 1ull}); TEST_MATH_FUNCTION(atan)({-1.5f, 1.3f, -1.1f, .9f, -.7f, .5f}); TEST_MATH_FUNCTION(atan)({1.4, -1.2, 1., -.8, .6, -.4, .2, -0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(atan)({-.98l, .67l, -54.l, .34l, -.21l}); #endif // TODO atan2 } TEST(TEST_CATEGORY, mathematical_functions_power_functions) { TEST_MATH_FUNCTION(sqrt)({0, 1, 2, 3, 5, 7, 11}); TEST_MATH_FUNCTION(sqrt)({0l, 1l, 2l, 3l, 5l, 7l, 11l}); TEST_MATH_FUNCTION(sqrt)({0ll, 1ll, 2ll, 3ll, 5ll, 7ll, 11ll}); TEST_MATH_FUNCTION(sqrt)({0u, 1u, 2u, 3u, 5u, 7u}); TEST_MATH_FUNCTION(sqrt)({0ul, 1ul, 2ul, 3ul, 5ul, 7ul}); TEST_MATH_FUNCTION(sqrt)({0ull, 1ull, 2ull, 3ull, 5ull, 7ull}); TEST_MATH_FUNCTION(sqrt)({10.f, 20.f, 30.f, 40.f}); TEST_MATH_FUNCTION(sqrt)({11.1, 22.2, 33.3, 44.4}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(sqrt)({10.l, 20.l, 30.l, 40.l}); #endif TEST_MATH_FUNCTION(cbrt)({-5, -3, -1, 2, 4, 6}); TEST_MATH_FUNCTION(cbrt)({-5l, -3l, -1l, 2l, 4l, 6l}); TEST_MATH_FUNCTION(cbrt)({-5ll, -3ll, -1ll, 2ll, 4ll, 6ll}); TEST_MATH_FUNCTION(cbrt)({0u, 1u, 2u, 3u, 4u, 5u}); TEST_MATH_FUNCTION(cbrt)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul}); TEST_MATH_FUNCTION(cbrt)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull}); TEST_MATH_FUNCTION(cbrt)({-1.f, .2f, -3.f, .4f, -5.f}); TEST_MATH_FUNCTION(cbrt)({11.1, -2.2, 33.3, -4.4, 55.5}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(cbrt)({-10.l, 20.l, -30.l, 40.l, -50.l}); #endif do_test_math_binary_function(2.f, 3.f); do_test_math_binary_function(2., 3.); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS do_test_math_binary_function(2.l, 3.l); #endif do_test_math_binary_function(2.f, 3.f); do_test_math_binary_function(2., 3.); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS // FIXME: fails with gcc on Power platforms #if !(defined(KOKKOS_ARCH_POWER8) || defined(KOKKOS_ARCH_POWER9)) do_test_math_binary_function(2.l, 3.l); #endif #endif } TEST(TEST_CATEGORY, mathematical_functions_exponential_functions) { TEST_MATH_FUNCTION(exp)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0}); TEST_MATH_FUNCTION(exp)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l}); TEST_MATH_FUNCTION(exp)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll}); TEST_MATH_FUNCTION(exp)({0u, 1u, 2u, 3u, 4u, 5u}); TEST_MATH_FUNCTION(exp)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul}); TEST_MATH_FUNCTION(exp)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull}); TEST_MATH_FUNCTION(exp)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f}); TEST_MATH_FUNCTION(exp)({-98., -7.6, -.54, 3.2, 1., -0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(exp)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l}); #endif TEST_MATH_FUNCTION(exp2)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0}); TEST_MATH_FUNCTION(exp2)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l}); TEST_MATH_FUNCTION(exp2)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll}); TEST_MATH_FUNCTION(exp2)({0u, 1u, 2u, 3u, 4u, 5u}); TEST_MATH_FUNCTION(exp2)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul}); TEST_MATH_FUNCTION(exp2)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull}); TEST_MATH_FUNCTION(exp2)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f}); TEST_MATH_FUNCTION(exp2)({-98., -7.6, -.54, 3.2, 1., -0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(exp2)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l}); #endif TEST_MATH_FUNCTION(expm1)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0}); TEST_MATH_FUNCTION(expm1)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l}); TEST_MATH_FUNCTION(expm1)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll}); TEST_MATH_FUNCTION(expm1)({0u, 1u, 2u, 3u, 4u, 5u}); TEST_MATH_FUNCTION(expm1)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul}); TEST_MATH_FUNCTION(expm1)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull}); TEST_MATH_FUNCTION(expm1)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f}); TEST_MATH_FUNCTION(expm1)({-98., -7.6, -.54, 3.2, 1., -0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(expm1)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l}); #endif TEST_MATH_FUNCTION(log)({1, 23, 456, 7890}); TEST_MATH_FUNCTION(log)({1l, 23l, 456l, 7890l}); TEST_MATH_FUNCTION(log)({1ll, 23ll, 456ll, 7890ll}); TEST_MATH_FUNCTION(log)({1u, 23u, 456u, 7890u}); TEST_MATH_FUNCTION(log)({1ul, 23ul, 456ul, 7890ul}); TEST_MATH_FUNCTION(log)({1ull, 23ull, 456ull, 7890ull}); TEST_MATH_FUNCTION(log)({1234.f, 567.f, 89.f, .1f}); TEST_MATH_FUNCTION(log)({1234., 567., 89., .02}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(log)({1234.l, 567.l, 89.l, .003l}); #endif TEST_MATH_FUNCTION(log10)({1, 23, 456, 7890}); TEST_MATH_FUNCTION(log10)({1l, 23l, 456l, 7890l}); TEST_MATH_FUNCTION(log10)({1ll, 23ll, 456ll, 7890ll}); TEST_MATH_FUNCTION(log10)({1u, 23u, 456u, 7890u}); TEST_MATH_FUNCTION(log10)({1ul, 23ul, 456ul, 7890ul}); TEST_MATH_FUNCTION(log10)({1ull, 23ull, 456ull, 7890ull}); TEST_MATH_FUNCTION(log10)({1234.f, 567.f, 89.f, .1f}); TEST_MATH_FUNCTION(log10)({1234., 567., 89., .02}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(log10)({1234.l, 567.l, 89.l, .003l}); #endif // FIXME_OPENMPTARGET FIXME_AMD #if defined(KOKKOS_ENABLE_OPENMPTARGET) && \ (defined(KOKKOS_ARCH_VEGA906) || defined(KOKKOS_ARCH_VEGA908) || \ defined(KOKKOS_ARCH_VEGA90A)) TEST_MATH_FUNCTION(log2)({1, 23, 456, 7890}); #endif TEST_MATH_FUNCTION(log2)({1l, 23l, 456l, 7890l}); TEST_MATH_FUNCTION(log2)({1ll, 23ll, 456ll, 7890ll}); TEST_MATH_FUNCTION(log2)({1u, 23u, 456u, 7890u}); TEST_MATH_FUNCTION(log2)({1ul, 23ul, 456ul, 7890ul}); TEST_MATH_FUNCTION(log2)({1ull, 23ull, 456ull, 7890ull}); TEST_MATH_FUNCTION(log2)({1234.f, 567.f, 89.f, .1f}); TEST_MATH_FUNCTION(log2)({1234., 567., 89., .02}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(log2)({1234.l, 567.l, 89.l, .003l}); #endif TEST_MATH_FUNCTION(log1p)({1, 23, 456, 7890, 0}); TEST_MATH_FUNCTION(log1p)({1l, 23l, 456l, 7890l, 0l}); TEST_MATH_FUNCTION(log1p)({1ll, 23ll, 456ll, 7890ll, 0ll}); TEST_MATH_FUNCTION(log1p)({1u, 23u, 456u, 7890u, 0u}); TEST_MATH_FUNCTION(log1p)({1ul, 23ul, 456ul, 7890ul, 0ul}); TEST_MATH_FUNCTION(log1p)({1ull, 23ull, 456ull, 7890ull, 0ull}); TEST_MATH_FUNCTION(log1p)({1234.f, 567.f, 89.f, -.9f}); TEST_MATH_FUNCTION(log1p)({1234., 567., 89., -.08}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(log1p)({1234.l, 567.l, 89.l, -.007l}); #endif } TEST(TEST_CATEGORY, mathematical_functions_hyperbolic_functions) { TEST_MATH_FUNCTION(sinh)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(sinh)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(sinh)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(sinh)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(sinh)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(sinh)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(sinh)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(sinh)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(sinh)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(cosh)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(cosh)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(cosh)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(cosh)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(cosh)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(cosh)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(cosh)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(cosh)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(cosh)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(tanh)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(tanh)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(tanh)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(tanh)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(tanh)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(tanh)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(tanh)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(tanh)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(tanh)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(asinh)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(asinh)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(asinh)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(asinh)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(asinh)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(asinh)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(asinh)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(asinh)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(asinh)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(acosh)({1, 2, 3, 4, 5, 6}); TEST_MATH_FUNCTION(acosh)({1l, 2l, 3l, 4l, 5l, 6l}); TEST_MATH_FUNCTION(acosh)({1ll, 2ll, 3ll, 4ll, 5ll, 6ll}); TEST_MATH_FUNCTION(acosh)({1u, 2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(acosh)({1ul, 2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(acosh)({1ull, 2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(acosh)({1.2f, 34.f, 56.f, 789.f}); TEST_MATH_FUNCTION(acosh)({1.2, 34., 56., 789.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(acosh)({1.2l, 34.l, 56.l, 789.l}); #endif TEST_MATH_FUNCTION(atanh)({0}); TEST_MATH_FUNCTION(atanh)({0l}); TEST_MATH_FUNCTION(atanh)({0ll}); TEST_MATH_FUNCTION(atanh)({0u}); TEST_MATH_FUNCTION(atanh)({0ul}); TEST_MATH_FUNCTION(atanh)({0ull}); TEST_MATH_FUNCTION(atanh)({-.97f, .86f, -.53f, .42f, -.1f, 0.f}); TEST_MATH_FUNCTION(atanh)({-.97, .86, -.53, .42, -.1, 0.}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(atanh)({-.97l, .86l, -.53l, .42l, -.1l, 0.l}); #endif } #endif #ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2 TEST(TEST_CATEGORY, mathematical_functions_error_and_gamma_functions) { TEST_MATH_FUNCTION(erf)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(erf)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(erf)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(erf)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(erf)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(erf)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(erf)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(erf)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(erf)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(erfc)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(erfc)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(erfc)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(erfc)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(erfc)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(erfc)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(erfc)({.1f, -2.f, 3.f}); TEST_MATH_FUNCTION(erfc)({-4., .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(erfc)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(tgamma)({1, 2, 3, 4, 56, 78}); TEST_MATH_FUNCTION(tgamma)({1l, 2l, 3l, 4l, 56l, 78l}); TEST_MATH_FUNCTION(tgamma)({1ll, 2ll, 3ll, 4ll, 56ll, 78ll}); TEST_MATH_FUNCTION(tgamma)({1u, 2u, 3u, 4u, 56u, 78u}); TEST_MATH_FUNCTION(tgamma)({1ul, 2ul, 3ul, 4ul, 56ul, 78ul}); TEST_MATH_FUNCTION(tgamma)({1ull, 2ull, 3ull, 4ull, 56ull, 78ull}); TEST_MATH_FUNCTION(tgamma)({.1f, -2.2f, 3.f}); TEST_MATH_FUNCTION(tgamma)({-4.4, .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(tgamma)({.7l, .8l, .9l}); #endif TEST_MATH_FUNCTION(lgamma)({1, 2, 3, 4, 56, 78}); TEST_MATH_FUNCTION(lgamma)({1l, 2l, 3l, 4l, 56l, 78l}); TEST_MATH_FUNCTION(lgamma)({1ll, 2ll, 3ll, 4ll, 56ll, 78ll}); TEST_MATH_FUNCTION(lgamma)({1u, 2u, 3u, 4u, 56u, 78u}); TEST_MATH_FUNCTION(lgamma)({1ul, 2ul, 3ul, 4ul, 56ul, 78ul}); TEST_MATH_FUNCTION(lgamma)({1ull, 2ull, 3ull, 4ull, 56ull, 78ull}); TEST_MATH_FUNCTION(lgamma)({.1f, -2.2f, 3.f}); TEST_MATH_FUNCTION(lgamma)({-4.4, .5, -.6}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(lgamma)({.7l, .8l, .9l}); #endif } TEST(TEST_CATEGORY, mathematical_functions_nearest_interger_floating_point_operations) { TEST_MATH_FUNCTION(ceil)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(ceil)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(ceil)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(ceil)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(ceil)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(ceil)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(ceil)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f}); TEST_MATH_FUNCTION(ceil)({-6.6, 7.7, -8.8, 9.9}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(ceil)({12.3l, 4.56l, 789.l}); #endif TEST_MATH_FUNCTION(floor)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(floor)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(floor)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(floor)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(floor)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(floor)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(floor)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f}); TEST_MATH_FUNCTION(floor)({-6.6, 7.7, -8.8, 9.9}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(floor)({12.3l, 4.56l, 789.l}); #endif TEST_MATH_FUNCTION(trunc)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(trunc)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(trunc)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(trunc)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(trunc)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(trunc)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(trunc)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f}); TEST_MATH_FUNCTION(trunc)({-6.6, 7.7, -8.8, 9.9}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(trunc)({12.3l, 4.56l, 789.l}); #endif TEST_MATH_FUNCTION(round)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(round)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(round)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(round)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(round)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(round)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(round)({2.3f, 2.5f, 2.7f, -2.3f, -2.5f, -2.7f, -0.0f}); TEST_MATH_FUNCTION(round)({2.3, 2.5, 2.7, -2.3, -2.5, -2.7, -0.0}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(round)({2.3l, 2.5l, 2.7l, -2.3l, -2.5l, -2.7l, -0.0l}); #endif #ifndef KOKKOS_ENABLE_SYCL TEST_MATH_FUNCTION(nearbyint)({-3, -2, -1, 0, 1}); TEST_MATH_FUNCTION(nearbyint)({-3l, -2l, -1l, 0l, 1l}); TEST_MATH_FUNCTION(nearbyint)({-3ll, -2ll, -1ll, 0ll, 1ll}); TEST_MATH_FUNCTION(nearbyint)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(nearbyint)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(nearbyint)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(nearbyint)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f}); TEST_MATH_FUNCTION(nearbyint)({-6.6, 7.7, -8.8, 9.9}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(nearbyint)({12.3l, 4.56l, 789.l}); #endif #endif } TEST(TEST_CATEGORY, mathematical_functions_floating_point_manipulation_functions) { TEST_MATH_FUNCTION(logb)({2, 3, 4, 56, 789}); TEST_MATH_FUNCTION(logb)({2l, 3l, 4l, 56l, 789l}); TEST_MATH_FUNCTION(logb)({2ll, 3ll, 4ll, 56ll, 789ll}); TEST_MATH_FUNCTION(logb)({2u, 3u, 4u, 5u, 6u}); TEST_MATH_FUNCTION(logb)({2ul, 3ul, 4ul, 5ul, 6ul}); TEST_MATH_FUNCTION(logb)({2ull, 3ull, 4ull, 5ull, 6ull}); TEST_MATH_FUNCTION(logb)({123.45f, 6789.0f}); TEST_MATH_FUNCTION(logb)({123.45, 6789.0}); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS TEST_MATH_FUNCTION(logb)({123.45l, 6789.0l}); #endif do_test_math_binary_function(0, 1.f); do_test_math_binary_function(1, 2.f); do_test_math_binary_function(0.1, 0); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS do_test_math_binary_function(1, 2.l); do_test_math_binary_function(1.l, 2.l); #endif do_test_math_binary_function(0, 1.f); do_test_math_binary_function(1, 2.f); do_test_math_binary_function(0.1, 0); do_test_math_binary_function(1.f, +2.f); do_test_math_binary_function(1.f, -2.f); do_test_math_binary_function(1., +2.); do_test_math_binary_function(1., -2.); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS do_test_math_binary_function(1, +2.l); do_test_math_binary_function(1.l, +2); do_test_math_binary_function(1.l, +2.l); do_test_math_binary_function(1.l, -2.l); #endif } template struct TestAbsoluteValueFunction { TestAbsoluteValueFunction() { run(); } void run() const { int errors = 0; Kokkos::parallel_reduce(Kokkos::RangePolicy(0, 1), *this, errors); ASSERT_EQ(errors, 0); } KOKKOS_FUNCTION void operator()(int, int& e) const { using Kokkos::abs; if (abs(1) != 1 || abs(-1) != 1) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(int)\n"); } if (abs(2l) != 2l || abs(-2l) != 2l) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(long int)\n"); } if (abs(3ll) != 3ll || abs(-3ll) != 3ll) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(long long int)\n"); } if (abs(4.f) != 4.f || abs(-4.f) != 4.f) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(float)\n"); } if (abs(5.) != 5. || abs(-5.) != 5.) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(double)\n"); } #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS if (abs(6.l) != 6.l || abs(-6.l) != 6.l) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(long double)\n"); } #endif // special values using Kokkos::isinf; using Kokkos::isnan; if (abs(-0.) != 0. #ifndef KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL || !isinf(abs(-INFINITY)) || !isnan(abs(-NAN)) #endif ) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF( "failed abs(floating_point) special values\n"); } static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS static_assert(std::is_same::value, ""); #endif } }; TEST(TEST_CATEGORY, mathematical_functions_absolute_value) { TestAbsoluteValueFunction(); } template struct TestIsNaN { TestIsNaN() { run(); } void run() const { int errors = 0; Kokkos::parallel_reduce(Kokkos::RangePolicy(0, 1), *this, errors); ASSERT_EQ(errors, 0); } KOKKOS_FUNCTION void operator()(int, int& e) const { using Kokkos::isnan; using Kokkos::Experimental::quiet_NaN; using Kokkos::Experimental::signaling_NaN; if (isnan(1) || isnan(INT_MAX)) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(integral)\n"); } if (isnan(2.f) #ifndef KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL || !isnan(quiet_NaN::value) || !isnan(signaling_NaN::value) #endif ) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(float)\n"); } if (isnan(3.) #ifndef KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL || !isnan(quiet_NaN::value) || !isnan(signaling_NaN::value) #endif ) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(double)\n"); } #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS if (isnan(4.l) #ifndef KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL || !isnan(quiet_NaN::value) || !isnan(signaling_NaN::value) #endif ) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(long double)\n"); } #endif // special values if (isnan(INFINITY) #ifndef KOKKOS_IMPL_WORKAROUND_INTEL_LLVM_DEFAULT_FLOATING_POINT_MODEL || !isnan(NAN) #endif ) { ++e; KOKKOS_IMPL_DO_NOT_USE_PRINTF( "failed isnan(floating_point) special values\n"); } static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); static_assert(std::is_same::value, ""); #ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS static_assert(std::is_same::value, ""); #endif } }; TEST(TEST_CATEGORY, mathematical_functions_isnan) { TestIsNaN(); } #endif