/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "pair_born_coul_long_gpu.h" #include "atom.h" #include "domain.h" #include "error.h" #include "ewald_const.h" #include "force.h" #include "gpu_extra.h" #include "kspace.h" #include "math_const.h" #include "neigh_list.h" #include "neighbor.h" #include "suffix.h" #include using namespace LAMMPS_NS; using namespace MathConst; using namespace EwaldConst; // External functions from cuda library for atom decomposition int borncl_gpu_init(const int ntypes, double **cutsq, double **host_rhoinv, double **host_born1, double **host_born2, double **host_born3, double **host_a, double **host_c, double **host_d, double **sigma, double **offset, double *special_lj, const int inum, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen, double **host_cut_ljsq, double host_cut_coulsq, double *host_special_coul, const double qqrd2e, const double g_ewald); void borncl_gpu_clear(); int **borncl_gpu_compute_n(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success, double *host_q, double *boxlo, double *prd); void borncl_gpu_compute(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success, double *host_q, const int nlocal, double *boxlo, double *prd); double borncl_gpu_bytes(); /* ---------------------------------------------------------------------- */ PairBornCoulLongGPU::PairBornCoulLongGPU(LAMMPS *lmp) : PairBornCoulLong(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; suffix_flag |= Suffix::GPU; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairBornCoulLongGPU::~PairBornCoulLongGPU() { borncl_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairBornCoulLongGPU::compute(int eflag, int vflag) { ev_init(eflag, vflag); int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { double sublo[3], subhi[3]; if (domain->triclinic == 0) { sublo[0] = domain->sublo[0]; sublo[1] = domain->sublo[1]; sublo[2] = domain->sublo[2]; subhi[0] = domain->subhi[0]; subhi[1] = domain->subhi[1]; subhi[2] = domain->subhi[2]; } else { domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi); } inum = atom->nlocal; firstneigh = borncl_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success, atom->q, domain->boxlo, domain->prd); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; borncl_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->q, atom->nlocal, domain->boxlo, domain->prd); } if (!success) error->one(FLERR, "Insufficient memory on accelerator"); if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0) neighbor->build_topology(); if (host_start < inum) { cpu_time = platform::walltime(); cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh); cpu_time = platform::walltime() - cpu_time; } } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairBornCoulLongGPU::init_style() { if (!atom->q_flag) error->all(FLERR, "Pair style born/coul/long/gpu requires atom attribute q"); // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i, j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; cut_coulsq = cut_coul * cut_coul; // ensure use of KSpace long-range solver, set g_ewald if (force->kspace == nullptr) error->all(FLERR, "Pair style requires a KSpace style"); g_ewald = force->kspace->g_ewald; // setup force tables if (ncoultablebits) init_tables(cut_coul, cut_respa); int maxspecial = 0; if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial; int mnf = 5e-2 * neighbor->oneatom; int success = borncl_gpu_init( atom->ntypes + 1, cutsq, rhoinv, born1, born2, born3, a, c, d, sigma, offset, force->special_lj, atom->nlocal, atom->nlocal + atom->nghost, mnf, maxspecial, cell_size, gpu_mode, screen, cut_ljsq, cut_coulsq, force->special_coul, force->qqrd2e, g_ewald); GPU_EXTRA::check_flag(success, error, world); if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL); } /* ---------------------------------------------------------------------- */ double PairBornCoulLongGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + borncl_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairBornCoulLongGPU::cpu_compute(int start, int inum, int eflag, int /* vflag */, int *ilist, int *numneigh, int **firstneigh) { int i, j, ii, jj, jnum, itype, jtype; double qtmp, xtmp, ytmp, ztmp, delx, dely, delz, evdwl, ecoul, fpair; double r, rexp, r2inv, r6inv, forcecoul, forceborn, factor_coul, factor_lj; double grij, expm2, prefactor, t, erfc; int *jlist; double rsq; evdwl = ecoul = 0.0; double **x = atom->x; double **f = atom->f; double *q = atom->q; int *type = atom->type; double *special_coul = force->special_coul; double *special_lj = force->special_lj; double qqrd2e = force->qqrd2e; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; factor_coul = special_coul[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r2inv = 1.0 / rsq; r = sqrt(rsq); if (rsq < cut_coulsq) { grij = g_ewald * r; expm2 = exp(-grij * grij); t = 1.0 / (1.0 + EWALD_P * grij); erfc = t * (A1 + t * (A2 + t * (A3 + t * (A4 + t * A5)))) * expm2; prefactor = qqrd2e * qtmp * q[j] / r; forcecoul = prefactor * (erfc + EWALD_F * grij * expm2); if (factor_coul < 1.0) forcecoul -= (1.0 - factor_coul) * prefactor; } else forcecoul = 0.0; if (rsq < cut_ljsq[itype][jtype]) { r6inv = r2inv * r2inv * r2inv; rexp = exp((sigma[itype][jtype] - r) * rhoinv[itype][jtype]); forceborn = born1[itype][jtype] * r * rexp - born2[itype][jtype] * r6inv + born3[itype][jtype] * r2inv * r6inv; } else forceborn = 0.0; fpair = (forcecoul + factor_lj * forceborn) * r2inv; f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (eflag) { if (rsq < cut_coulsq) { ecoul = prefactor * erfc; if (factor_coul < 1.0) ecoul -= (1.0 - factor_coul) * prefactor; } else ecoul = 0.0; if (rsq < cut_ljsq[itype][jtype]) { evdwl = a[itype][jtype] * rexp - c[itype][jtype] * r6inv + d[itype][jtype] * r6inv * r2inv - offset[itype][jtype]; evdwl *= factor_lj; } else evdwl = 0.0; } if (evflag) ev_tally_full(i, evdwl, ecoul, fpair, delx, dely, delz); } } } }