// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "angle_amoeba.h" #include #include #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleAmoeba::AngleAmoeba(LAMMPS *lmp) : Angle(lmp) { pflag = nullptr; theta0 = nullptr; k2 = nullptr; k3 = nullptr; k4 = nullptr; k5 = nullptr; k6 = nullptr; } /* ---------------------------------------------------------------------- */ AngleAmoeba::~AngleAmoeba() { if (copymode) return; if (allocated) { memory->destroy(setflag); memory->destroy(pflag); memory->destroy(theta0); memory->destroy(k2); memory->destroy(k3); memory->destroy(k4); memory->destroy(k5); memory->destroy(k6); } } /* ---------------------------------------------------------------------- */ void AngleAmoeba::compute(int eflag, int vflag) { int i1,i2,i3,n,type,tflag; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double dtheta,dtheta2,dtheta3,dtheta4,dtheta5,dtheta6,de_angle; double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22; double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,b1,b2; eangle = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int **nspecial = atom->nspecial; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // tflag = 0 for "angle", 1 for "anglep" in Tinker PRM file // atom 2 must have 3 bond partners to invoke anglep() variant tflag = pflag[type]; if (tflag && nspecial[i2][0] == 3) { anglep(i1,i2,i3,type,eflag); continue; } // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // force & energy for angle term dtheta = acos(c) - theta0[type]; dtheta2 = dtheta*dtheta; dtheta3 = dtheta2*dtheta; dtheta4 = dtheta3*dtheta; dtheta5 = dtheta4*dtheta; dtheta6 = dtheta5*dtheta; de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 + 4.0*k4[type]*dtheta3 + 5.0*k5[type]*dtheta4 + 6.0*k6[type]*dtheta5; a = -de_angle*s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4 + k5[type]*dtheta5 + k6[type]*dtheta6; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleAmoeba::anglep(int i1, int i2, int i3, int type, int eflag) { int i4; tagint i1tag,i3tag,i4tag; double xia,yia,zia,xib,yib,zib,xic,yic,zic,xid,yid,zid; double xad,yad,zad,xbd,ybd,zbd,xcd,ycd,zcd; double xt,yt,zt,rt2; double xip,yip,zip,xap,yap,zap,xcp,ycp,zcp; double rap2,rcp2; double dtheta,dtheta2,dtheta3,dtheta4,dtheta5,dtheta6; double xm,ym,zm,rm,dot; double cosine,angle; double eangle,deddt; double dedxip,dedyip,dedzip,dpdxia,dpdyia,dpdzia,dpdxic,dpdyic,dpdzic; double delta,delta2,ptrt2,term,terma,termc; double f1[3],f2[3],f3[3],f4[3]; double **x = atom->x; double **f = atom->f; tagint **special = atom->special; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; // i4 = index of third atom that i2 is bonded to i1tag = atom->tag[i1]; i3tag = atom->tag[i3]; for (int ibond = 0; ibond < 3; ibond++) { i4tag = special[i2][ibond]; if (i4tag != i1tag && i4tag != i3tag) break; } i4 = atom->map(i4tag); i4 = domain->closest_image(i2,i4); // anglep out-of-plane calculation from Tinker xia = x[i1][0]; yia = x[i1][1]; zia = x[i1][2]; xib = x[i2][0]; yib = x[i2][1]; zib = x[i2][2]; xic = x[i3][0]; yic = x[i3][1]; zic = x[i3][2]; xid = x[i4][0]; yid = x[i4][1]; zid = x[i4][2]; xad = xia - xid; yad = yia - yid; zad = zia - zid; xbd = xib - xid; ybd = yib - yid; zbd = zib - zid; xcd = xic - xid; ycd = yic - yid; zcd = zic - zid; xt = yad*zcd - zad*ycd; yt = zad*xcd - xad*zcd; zt = xad*ycd - yad*xcd; rt2 = xt*xt + yt*yt + zt*zt; delta = -(xt*xbd + yt*ybd + zt*zbd) / rt2; xip = xib + xt*delta; yip = yib + yt*delta; zip = zib + zt*delta; xap = xia - xip; yap = yia - yip; zap = zia - zip; xcp = xic - xip; ycp = yic - yip; zcp = zic - zip; rap2 = xap*xap + yap*yap + zap*zap; rcp2 = xcp*xcp + ycp*ycp + zcp*zcp; // NOTE: can these be 0.0 ? what to do? if (rap2 == 0.0 || rcp2 == 0.0) return; xm = ycp*zap - zcp*yap; ym = zcp*xap - xcp*zap; zm = xcp*yap - ycp*xap; rm = sqrt(xm*xm + ym*ym + zm*zm); rm = MAX(rm,0.0001); dot = xap*xcp + yap*ycp + zap*zcp; cosine = dot / sqrt(rap2*rcp2); cosine = MIN(1.0,MAX(-1.0,cosine)); // force & energy for angle term dtheta = acos(cosine) - theta0[type]; dtheta2 = dtheta*dtheta; dtheta3 = dtheta2*dtheta; dtheta4 = dtheta3*dtheta; dtheta5 = dtheta4*dtheta; dtheta6 = dtheta5*dtheta; deddt = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 + 4.0*k4[type]*dtheta3 + 5.0*k5[type]*dtheta4 + 6.0*k6[type]*dtheta5; if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4 + k5[type]*dtheta5 + k6[type]*dtheta6; // chain rule terms for first derivative components terma = -deddt / (rap2*rm); termc = deddt / (rcp2*rm); f1[0] = terma * (yap*zm-zap*ym); f1[1] = terma * (zap*xm-xap*zm); f1[2] = terma * (xap*ym-yap*xm); f3[0] = termc * (ycp*zm-zcp*ym); f3[1] = termc * (zcp*xm-xcp*zm); f3[2] = termc * (xcp*ym-ycp*xm); dedxip = -f1[0] - f3[0]; dedyip = -f1[1] - f3[1]; dedzip = -f1[2] - f3[2]; // chain rule components for the projection of the central atom delta2 = 2.0 * delta; ptrt2 = (dedxip*xt + dedyip*yt + dedzip*zt) / rt2; term = (zcd*ybd-ycd*zbd) + delta2*(yt*zcd-zt*ycd); dpdxia = delta*(ycd*dedzip-zcd*dedyip) + term*ptrt2; term = (xcd*zbd-zcd*xbd) + delta2*(zt*xcd-xt*zcd); dpdyia = delta*(zcd*dedxip-xcd*dedzip) + term*ptrt2; term = (ycd*xbd-xcd*ybd) + delta2*(xt*ycd-yt*xcd); dpdzia = delta*(xcd*dedyip-ycd*dedxip) + term*ptrt2; term = (yad*zbd-zad*ybd) + delta2*(zt*yad-yt*zad); dpdxic = delta*(zad*dedyip-yad*dedzip) + term*ptrt2; term = (zad*xbd-xad*zbd) + delta2*(xt*zad-zt*xad); dpdyic = delta*(xad*dedzip-zad*dedxip) + term*ptrt2; term = (xad*ybd-yad*xbd) + delta2*(yt*xad-xt*yad); dpdzic = delta*(yad*dedxip-xad*dedyip) + term*ptrt2; // compute derivative components for this interaction f1[0] += dpdxia; f1[1] += dpdyia; f1[2] += dpdzia; f2[0] = dedxip; f2[1] = dedyip; f2[2] = dedzip; f3[0] += dpdxic; f3[1] += dpdyic; f3[2] += dpdzic; f4[0] = -f1[0] - f2[0] - f3[0]; f4[1] = -f1[1] - f2[1] - f3[1]; f4[2] = -f1[2] - f2[2] - f3[2]; // apply force to each of 4 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] += f2[0]; f[i2][1] += f2[1]; f[i2][2] += f2[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (newton_bond || i4 < nlocal) { f[i4][0] += f4[0]; f[i4][1] += f4[1]; f[i4][2] += f4[2]; } if (evflag) ev_tally4(i1,i2,i3,14,nlocal,newton_bond,eangle,f1,f2,f3,f4); } /* ---------------------------------------------------------------------- */ void AngleAmoeba::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(pflag,n+1,"angle:pflag"); memory->create(theta0,n+1,"angle:theta0"); memory->create(k2,n+1,"angle:k2"); memory->create(k3,n+1,"angle:k3"); memory->create(k4,n+1,"angle:k4"); memory->create(k5,n+1,"angle:k5"); memory->create(k6,n+1,"angle:k6"); memory->create(setflag,n+1,"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ void AngleAmoeba::coeff(int narg, char **arg) { if (!allocated) allocate(); int ilo,ihi; utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error); int count = 0; if (narg != 8) error->all(FLERR,"Incorrect args for angle coefficients"); int pflag_one = utils::inumeric(FLERR,arg[1],false,lmp); double theta0_one = utils::numeric(FLERR,arg[2],false,lmp); double k2_one = utils::numeric(FLERR,arg[3],false,lmp); double k3_one = utils::numeric(FLERR,arg[4],false,lmp); double k4_one = utils::numeric(FLERR,arg[5],false,lmp); double k5_one = utils::numeric(FLERR,arg[6],false,lmp); double k6_one = utils::numeric(FLERR,arg[7],false,lmp); // convert theta0 from degrees to radians for (int i = ilo; i <= ihi; i++) { pflag[i] = pflag_one; theta0[i] = theta0_one/180.0 * MY_PI; k2[i] = k2_one; k3[i] = k3_one; k4[i] = k4_one; k5[i] = k5_one; k6[i] = k6_one; count++; } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); for (int i = ilo; i <= ihi; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- */ double AngleAmoeba::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleAmoeba::write_restart(FILE *fp) { fwrite(&pflag[1],sizeof(int),atom->nangletypes,fp); fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); fwrite(&k2[1],sizeof(double),atom->nangletypes,fp); fwrite(&k3[1],sizeof(double),atom->nangletypes,fp); fwrite(&k4[1],sizeof(double),atom->nangletypes,fp); fwrite(&k5[1],sizeof(double),atom->nangletypes,fp); fwrite(&k6[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleAmoeba::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { utils::sfread(FLERR,&pflag[1],sizeof(int),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&theta0[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&k2[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&k3[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&k4[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&k5[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&k6[1],sizeof(double),atom->nangletypes,fp,nullptr,error); } MPI_Bcast(&pflag[1],atom->nangletypes,MPI_INT,0,world); MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k2[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k3[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k4[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k5[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k6[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleAmoeba::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %d %g %g %g %g %g %g\n", i,pflag[i],theta0[i]/MY_PI*180.0,k2[i],k3[i],k4[i],k5[i],k6[i]); } /* ---------------------------------------------------------------------- */ double AngleAmoeba::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; double dtheta = acos(c) - theta0[type]; double dtheta2 = dtheta*dtheta; double dtheta3 = dtheta2*dtheta; double dtheta4 = dtheta3*dtheta; double dtheta5 = dtheta4*dtheta; double dtheta6 = dtheta5*dtheta; double energy = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4 + k5[type]*dtheta5 + k6[type]*dtheta6; return energy; }