/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Ravi Agrawal (Northwestern U) ------------------------------------------------------------------------- */ #include "fix_indent.h" #include "atom.h" #include "domain.h" #include "error.h" #include "input.h" #include "lattice.h" #include "math_extra.h" #include "modify.h" #include "respa.h" #include "update.h" #include "variable.h" #include #include using namespace LAMMPS_NS; using namespace FixConst; enum { NONE, SPHERE, CYLINDER, PLANE, CONE }; enum { INSIDE, OUTSIDE }; /* ---------------------------------------------------------------------- */ FixIndent::FixIndent(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), xstr(nullptr), ystr(nullptr), zstr(nullptr), rstr(nullptr), pstr(nullptr), rlostr(nullptr), rhistr(nullptr), lostr(nullptr), histr(nullptr) { if (narg < 4) utils::missing_cmd_args(FLERR, "fix indent", error); scalar_flag = 1; vector_flag = 1; size_vector = 3; energy_global_flag = 1; global_freq = 1; extscalar = 1; extvector = 1; respa_level_support = 1; ilevel_respa = 0; k = utils::numeric(FLERR, arg[3], false, lmp); if (k < 0.0) error->all(FLERR, "Illegal fix indent force constant: {}", k); k3 = k / 3.0; // read geometry of indenter and optional args int iarg = geometry(narg - 4, &arg[4]) + 4; options(narg - iarg, &arg[iarg]); // setup scaling const double xscale{scaleflag ? domain->lattice->xlattice : 1.0}; const double yscale{scaleflag ? domain->lattice->ylattice : 1.0}; const double zscale{scaleflag ? domain->lattice->zlattice : 1.0}; // apply scaling factors to geometry if (istyle == SPHERE || istyle == CYLINDER) { if (!xstr) xvalue *= xscale; if (!ystr) yvalue *= yscale; if (!zstr) zvalue *= zscale; if (!rstr) rvalue *= xscale; } else if (istyle == CONE) { if (!xstr) xvalue *= xscale; if (!ystr) yvalue *= yscale; if (!zstr) zvalue *= zscale; double scaling_factor = 1.0; switch (cdim) { case 0: scaling_factor = xscale; break; case 1: scaling_factor = yscale; break; case 2: scaling_factor = zscale; break; } if (!rlostr) rlovalue *= scaling_factor; if (!rhistr) rhivalue *= scaling_factor; if (!lostr) lovalue *= scaling_factor; if (!histr) hivalue *= scaling_factor; } else if (istyle == PLANE) { if (cdim == 0 && !pstr) pvalue *= xscale; else if (cdim == 1 && !pstr) pvalue *= yscale; else if (cdim == 2 && !pstr) pvalue *= zscale; } else error->all(FLERR, "Unknown fix indent keyword: {}", istyle); varflag = 0; if (xstr || ystr || zstr || rstr || pstr || rlostr || rhistr || lostr || histr) varflag = 1; indenter_flag = 0; indenter[0] = indenter[1] = indenter[2] = indenter[3] = 0.0; } /* ---------------------------------------------------------------------- */ FixIndent::~FixIndent() { delete[] xstr; delete[] ystr; delete[] zstr; delete[] rstr; delete[] pstr; delete[] rlostr; delete[] rhistr; delete[] lostr; delete[] histr; } /* ---------------------------------------------------------------------- */ int FixIndent::setmask() { int mask = 0; mask |= POST_FORCE; mask |= POST_FORCE_RESPA; mask |= MIN_POST_FORCE; return mask; } /* ---------------------------------------------------------------------- */ void FixIndent::init() { if (xstr) { xvar = input->variable->find(xstr); if (xvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", xstr); if (!input->variable->equalstyle(xvar)) error->all(FLERR, "Variable {} for fix indent is invalid style", xstr); } if (ystr) { yvar = input->variable->find(ystr); if (yvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", ystr); if (!input->variable->equalstyle(yvar)) error->all(FLERR, "Variable {} for fix indent is invalid style", ystr); } if (zstr) { zvar = input->variable->find(zstr); if (zvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", zstr); if (!input->variable->equalstyle(zvar)) error->all(FLERR, "Variable {} for fix indent is invalid style", zstr); } if (rstr) { rvar = input->variable->find(rstr); if (rvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rstr); if (!input->variable->equalstyle(rvar)) error->all(FLERR, "Variable {} for fix indent is invalid style", rstr); } if (pstr) { pvar = input->variable->find(pstr); if (pvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", pstr); if (!input->variable->equalstyle(pvar)) error->all(FLERR, "Variable {} for fix indent is invalid style", pstr); } if (rlostr) { rlovar = input->variable->find(rlostr); if (rlovar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rlostr); if (!input->variable->equalstyle(rlovar)) error->all(FLERR, "Variable {} for fix indent is invalid style", rlostr); } if (rhistr) { rhivar = input->variable->find(rhistr); if (rhivar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rhistr); if (!input->variable->equalstyle(rhivar)) error->all(FLERR, "Variable {} for fix indent is invalid style", rhistr); } if (lostr) { lovar = input->variable->find(lostr); if (lovar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", lostr); if (!input->variable->equalstyle(lovar)) error->all(FLERR, "Variable {} for fix indent is invalid style", lostr); } if (histr) { hivar = input->variable->find(histr); if (hivar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", histr); if (!input->variable->equalstyle(hivar)) error->all(FLERR, "Variable {} for fix indent is invalid style", histr); } if (utils::strmatch(update->integrate_style, "^respa")) { ilevel_respa = (dynamic_cast(update->integrate))->nlevels - 1; if (respa_level >= 0) ilevel_respa = MIN(respa_level, ilevel_respa); } } /* ---------------------------------------------------------------------- */ void FixIndent::setup(int vflag) { if (utils::strmatch(update->integrate_style, "^verlet")) post_force(vflag); else { (dynamic_cast(update->integrate))->copy_flevel_f(ilevel_respa); post_force_respa(vflag, ilevel_respa, 0); (dynamic_cast(update->integrate))->copy_f_flevel(ilevel_respa); } } /* ---------------------------------------------------------------------- */ void FixIndent::min_setup(int vflag) { post_force(vflag); } /* ---------------------------------------------------------------------- */ void FixIndent::post_force(int /*vflag*/) { // indenter values, 0 = energy, 1-3 = force components // wrap variable evaluations with clear/add if (varflag) modify->clearstep_compute(); indenter_flag = 0; indenter[0] = indenter[1] = indenter[2] = indenter[3] = 0.0; // ctr = current indenter centerz double ctr[3] = {xvalue, yvalue, zvalue}; if (xstr) ctr[0] = input->variable->compute_equal(xvar); if (ystr) ctr[1] = input->variable->compute_equal(yvar); if (zstr) ctr[2] = input->variable->compute_equal(zvar); double **x = atom->x; double **f = atom->f; int *mask = atom->mask; int nlocal = atom->nlocal; double delx, dely, delz, r, dr, fmag, fx, fy, fz; // spherical indenter if (istyle == SPHERE) { // remap indenter center into periodic box domain->remap(ctr); double radius = rstr ? input->variable->compute_equal(rvar) : rvalue; if (radius < 0.0) error->all(FLERR, "Illegal fix indent sphere radius: {}", radius); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { delx = x[i][0] - ctr[0]; dely = x[i][1] - ctr[1]; delz = x[i][2] - ctr[2]; domain->minimum_image(delx, dely, delz); r = sqrt(delx * delx + dely * dely + delz * delz); if (side == OUTSIDE) { dr = r - radius; fmag = k * dr * dr; } else { dr = radius - r; fmag = -k * dr * dr; } if (dr >= 0.0) continue; fx = delx * fmag / r; fy = dely * fmag / r; fz = delz * fmag / r; f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; indenter[0] -= k3 * dr * dr * dr; indenter[1] -= fx; indenter[2] -= fy; indenter[3] -= fz; } // cylindrical indenter } else if (istyle == CYLINDER) { // ctr = current indenter axis // remap into periodic box // 3rd coord is just near box for remap(), since isn't used ctr[cdim] = domain->boxlo[cdim]; domain->remap(ctr); double radius{rstr ? input->variable->compute_equal(rvar) : rvalue}; if (radius < 0.0) error->all(FLERR, "Illegal fix indent cylinder radius: {}", radius); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { double del[3] = {x[i][0] - ctr[0], x[i][1] - ctr[1], x[i][2] - ctr[2]}; del[cdim] = 0; domain->minimum_image(del[0], del[1], del[2]); r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]); if (side == OUTSIDE) { dr = r - radius; fmag = k * dr * dr; } else { dr = radius - r; fmag = -k * dr * dr; } if (dr >= 0.0) continue; fx = del[0] * fmag / r; fy = del[1] * fmag / r; fz = del[2] * fmag / r; f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; indenter[0] -= k3 * dr * dr * dr; indenter[1] -= fx; indenter[2] -= fy; indenter[3] -= fz; } // conical indenter } else if (istyle == CONE) { double radiuslo{rlostr ? input->variable->compute_equal(rlovar) : rlovalue}; if (radiuslo < 0.0) error->all(FLERR, "Illegal fix indent cone lower radius: {}", radiuslo); double radiushi{rhistr ? input->variable->compute_equal(rhivar) : rhivalue}; if (radiushi < 0.0) error->all(FLERR, "Illegal fix indent cone high radius: {}", radiushi); double initial_lo{lostr ? input->variable->compute_equal(lovar) : lovalue}; double initial_hi{histr ? input->variable->compute_equal(hivar) : hivalue}; ctr[cdim] = 0.5 * (initial_hi + initial_lo); domain->remap(ctr); double hi = ctr[cdim] + 0.5 * (initial_hi - initial_lo); double lo = ctr[cdim] - 0.5 * (initial_hi - initial_lo); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { delx = x[i][0] - ctr[0]; dely = x[i][1] - ctr[1]; delz = x[i][2] - ctr[2]; domain->minimum_image(delx, dely, delz); double x0[3] = {delx + ctr[0], dely + ctr[1], delz + ctr[2]}; r = sqrt(delx * delx + dely * dely + delz * delz); // check if particle is inside or outside the cone bool point_inside_cone = PointInsideCone(cdim, ctr, lo, hi, radiuslo, radiushi, x0); if (side == INSIDE && point_inside_cone) continue; if (side == OUTSIDE && !point_inside_cone) continue; // find the distance between the point and the cone if (point_inside_cone) { DistanceInteriorPoint(cdim, ctr, lo, hi, radiuslo, radiushi, x0[0], x0[1], x0[2]); } else { DistanceExteriorPoint(cdim, ctr, lo, hi, radiuslo, radiushi, x0[0], x0[1], x0[2]); } // compute the force from the center of the cone // this is different from how it is done in fix wall/region dr = sqrt(x0[0] * x0[0] + x0[1] * x0[1] + x0[2] * x0[2]); int force_sign = {point_inside_cone ? 1 : -1}; fmag = force_sign * k * dr * dr; fx = delx * fmag / r; fy = dely * fmag / r; fz = delz * fmag / r; f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; indenter[0] -= k3 * dr * dr * dr; indenter[1] -= fx; indenter[2] -= fy; indenter[3] -= fz; } } // planar indenter } else { // plane = current plane position double plane{pstr ? input->variable->compute_equal(pvar) : pvalue}; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dr = planeside * (plane - x[i][cdim]); if (dr >= 0.0) continue; fmag = -planeside * k * dr * dr; f[i][cdim] += fmag; indenter[0] -= k3 * dr * dr * dr; indenter[cdim + 1] -= fmag; } } if (varflag) modify->addstep_compute(update->ntimestep + 1); } /* ---------------------------------------------------------------------- */ void FixIndent::post_force_respa(int vflag, int ilevel, int /*iloop*/) { if (ilevel == ilevel_respa) post_force(vflag); } /* ---------------------------------------------------------------------- */ void FixIndent::min_post_force(int vflag) { post_force(vflag); } /* ---------------------------------------------------------------------- energy of indenter interaction ------------------------------------------------------------------------- */ double FixIndent::compute_scalar() { // only sum across procs one time if (indenter_flag == 0) { MPI_Allreduce(indenter, indenter_all, 4, MPI_DOUBLE, MPI_SUM, world); indenter_flag = 1; } return indenter_all[0]; } /* ---------------------------------------------------------------------- components of force on indenter ------------------------------------------------------------------------- */ double FixIndent::compute_vector(int n) { // only sum across procs one time if (indenter_flag == 0) { MPI_Allreduce(indenter, indenter_all, 4, MPI_DOUBLE, MPI_SUM, world); indenter_flag = 1; } return indenter_all[n + 1]; } /* ---------------------------------------------------------------------- parse input args for geometry of indenter ------------------------------------------------------------------------- */ int FixIndent::geometry(int narg, char **arg) { if (narg < 0) utils::missing_cmd_args(FLERR, "fix indent", error); istyle = NONE; xstr = ystr = zstr = rstr = pstr = nullptr; xvalue = yvalue = zvalue = rvalue = pvalue = 0.0; // sphere if (strcmp(arg[0], "sphere") == 0) { if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword"); if (5 > narg) utils::missing_cmd_args(FLERR, "fix indent sphere", error); if (utils::strmatch(arg[1], "^v_")) { xstr = utils::strdup(arg[1] + 2); } else xvalue = utils::numeric(FLERR, arg[1], false, lmp); if (utils::strmatch(arg[2], "^v_")) { ystr = utils::strdup(arg[2] + 2); } else yvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { zstr = utils::strdup(arg[3] + 2); } else zvalue = utils::numeric(FLERR, arg[3], false, lmp); if (utils::strmatch(arg[4], "^v_")) { rstr = utils::strdup(arg[4] + 2); } else rvalue = utils::numeric(FLERR, arg[4], false, lmp); istyle = SPHERE; return 5; } // cylinder if (strcmp(arg[0], "cylinder") == 0) { if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword"); if (5 > narg) utils::missing_cmd_args(FLERR, "fix indent cylinder", error); if (strcmp(arg[1], "x") == 0) { cdim = 0; if (utils::strmatch(arg[2], "^v_")) { ystr = utils::strdup(arg[2] + 2); } else yvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { zstr = utils::strdup(arg[3] + 2); } else zvalue = utils::numeric(FLERR, arg[3], false, lmp); } else if (strcmp(arg[1], "y") == 0) { cdim = 1; if (utils::strmatch(arg[2], "^v_")) { xstr = utils::strdup(arg[2] + 2); } else xvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { zstr = utils::strdup(arg[3] + 2); } else zvalue = utils::numeric(FLERR, arg[3], false, lmp); } else if (strcmp(arg[1], "z") == 0) { cdim = 2; if (utils::strmatch(arg[2], "^v_")) { xstr = utils::strdup(arg[2] + 2); } else xvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { ystr = utils::strdup(arg[3] + 2); } else yvalue = utils::numeric(FLERR, arg[3], false, lmp); } else error->all(FLERR, "Unknown fix indent cylinder argument: {}", arg[1]); if (utils::strmatch(arg[4], "^v_")) { rstr = utils::strdup(arg[4] + 2); } else rvalue = utils::numeric(FLERR, arg[4], false, lmp); istyle = CYLINDER; return 5; } // cone if (strcmp(arg[0], "cone") == 0) { if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword"); if (8 > narg) utils::missing_cmd_args(FLERR, "fix indent cone", error); if (strcmp(arg[1], "x") == 0) { cdim = 0; if (utils::strmatch(arg[2], "^v_")) { ystr = utils::strdup(arg[2] + 2); } else yvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { zstr = utils::strdup(arg[3] + 2); } else zvalue = utils::numeric(FLERR, arg[3], false, lmp); } else if (strcmp(arg[1], "y") == 0) { cdim = 1; if (utils::strmatch(arg[2], "^v_")) { xstr = utils::strdup(arg[2] + 2); } else xvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { zstr = utils::strdup(arg[3] + 2); } else zvalue = utils::numeric(FLERR, arg[3], false, lmp); } else if (strcmp(arg[1], "z") == 0) { cdim = 2; if (utils::strmatch(arg[2], "^v_")) { xstr = utils::strdup(arg[2] + 2); } else xvalue = utils::numeric(FLERR, arg[2], false, lmp); if (utils::strmatch(arg[3], "^v_")) { ystr = utils::strdup(arg[3] + 2); } else yvalue = utils::numeric(FLERR, arg[3], false, lmp); } else error->all(FLERR, "Unknown fix indent cone argument: {}", arg[1]); if (utils::strmatch(arg[4], "^v_")) { rlostr = utils::strdup(arg[4] + 2); } else rlovalue = utils::numeric(FLERR, arg[4], false, lmp); if (utils::strmatch(arg[5], "^v_")) { rhistr = utils::strdup(arg[5] + 2); } else rhivalue = utils::numeric(FLERR, arg[5], false, lmp); if (utils::strmatch(arg[6], "^v_")) { lostr = utils::strdup(arg[6] + 2); } else lovalue = utils::numeric(FLERR, arg[6], false, lmp); if (utils::strmatch(arg[7], "^v_")) { histr = utils::strdup(arg[7] + 2); } else hivalue = utils::numeric(FLERR, arg[7], false, lmp); istyle = CONE; return 8; } // plane if (strcmp(arg[0], "plane") == 0) { if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword"); if (4 > narg) utils::missing_cmd_args(FLERR, "fix indent plane", error); if (strcmp(arg[1], "x") == 0) cdim = 0; else if (strcmp(arg[1], "y") == 0) cdim = 1; else if (strcmp(arg[1], "z") == 0) cdim = 2; else error->all(FLERR, "Unknown fix indent plane argument: {}", arg[1]); if (utils::strmatch(arg[2], "^v_")) { pstr = utils::strdup(arg[2] + 2); } else pvalue = utils::numeric(FLERR, arg[2], false, lmp); if (strcmp(arg[3], "lo") == 0) planeside = -1; else if (strcmp(arg[3], "hi") == 0) planeside = 1; else error->all(FLERR, "Unknown fix indent plane argument: {}", arg[3]); istyle = PLANE; return 4; } // invalid istyle arg error->all(FLERR, "Unknown fix indent argument: {}", arg[0]); return 0; } /* ---------------------------------------------------------------------- parse optional input args ------------------------------------------------------------------------- */ void FixIndent::options(int narg, char **arg) { scaleflag = 1; side = OUTSIDE; int iarg = 0; while (iarg < narg) { if (strcmp(arg[iarg], "units") == 0) { if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "fix indent units", error); if (strcmp(arg[iarg + 1], "box") == 0) scaleflag = 0; else if (strcmp(arg[iarg + 1], "lattice") == 0) scaleflag = 1; else error->all(FLERR, "Unknown fix indent units argument: {}", arg[iarg + 1]); iarg += 2; } else if (strcmp(arg[iarg], "side") == 0) { if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "fix indent side", error); if (strcmp(arg[iarg + 1], "in") == 0) side = INSIDE; else if (strcmp(arg[iarg + 1], "out") == 0) side = OUTSIDE; else error->all(FLERR, "Unknown fix indent side argument: {}", arg[iarg + 1]); iarg += 2; } else error->all(FLERR, "Unknown fix indent argument: {}", arg[iarg]); } } /* ---------------------------------------------------------------------- determines if a point is inside (true) or outside (false) of a cone ------------------------------------------------------------------------- */ bool FixIndent::PointInsideCone(int dir, double *center, double lo, double hi, double rlo, double rhi, double *x) { if ((x[dir] > hi) || (x[dir] < lo)) return false; double del[3] = {x[0] - center[0], x[1] - center[1], x[2] - center[2]}; del[dir] = 0.0; double dist = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]); double currentradius = rlo + (x[dir] - lo) * (rhi - rlo) / (hi - lo); if (dist > currentradius) return false; return true; } /* ---------------------------------------------------------------------- distance between an exterior point and a cone ------------------------------------------------------------------------- */ void FixIndent::DistanceExteriorPoint(int dir, double *center, double lo, double hi, double rlo, double rhi, double &x, double &y, double &z) { double xp[3], nearest[3], corner1[3], corner2[3]; double point[3] = {x, y, z}; double del[3] = {x - center[0], y - center[1], z - center[2]}; del[dir] = 0.0; double r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]); corner1[0] = center[0] + del[0] * rlo / r; corner1[1] = center[1] + del[1] * rlo / r; corner1[2] = center[2] + del[2] * rlo / r; corner1[dir] = lo; corner2[0] = center[0] + del[0] * rhi / r; corner2[1] = center[1] + del[1] * rhi / r; corner2[2] = center[2] + del[2] * rhi / r; corner2[dir] = hi; double corner3[3] = {center[0], center[1], center[2]}; corner3[dir] = lo; double corner4[3] = {center[0], center[1], center[2]}; corner4[dir] = hi; // initialize distance to a big number double distsq = 1.0e20; // check the first triangle point_on_line_segment(corner1, corner2, point, xp); distsq = closest(point, xp, nearest, distsq); // check the second triangle point_on_line_segment(corner1, corner3, point, xp); distsq = closest(point, xp, nearest, distsq); // check the third triangle point_on_line_segment(corner2, corner4, point, xp); distsq = closest(point, xp, nearest, distsq); x -= nearest[0]; y -= nearest[1]; z -= nearest[2]; return; } /* ---------------------------------------------------------------------- distance between an interior point and a cone ------------------------------------------------------------------------- */ void FixIndent::DistanceInteriorPoint(int dir, double *center, double lo, double hi, double rlo, double rhi, double &x, double &y, double &z) { double r, dist_disk, dist_surf; double surflo[3], surfhi[3], xs[3]; double initial_point[3] = {x, y, z}; double point[3] = {0.0, 0.0, 0.0}; // initial check with the two disks if ((initial_point[dir] - lo) < (hi - initial_point[dir])) { dist_disk = (initial_point[dir] - lo) * (initial_point[dir] - lo); point[dir] = initial_point[dir] - lo; } else { dist_disk = (hi - initial_point[dir]) * (hi - initial_point[dir]); point[dir] = initial_point[dir] - hi; } // check with the points in the conical surface double del[3] = {x - center[0], y - center[1], z - center[2]}; del[dir] = 0.0; r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]); surflo[0] = center[0] + del[0] * rlo / r; surflo[1] = center[1] + del[1] * rlo / r; surflo[2] = center[2] + del[2] * rlo / r; surflo[dir] = lo; surfhi[0] = center[0] + del[0] * rhi / r; surfhi[1] = center[1] + del[1] * rhi / r; surfhi[2] = center[2] + del[2] * rhi / r; surfhi[dir] = hi; point_on_line_segment(surflo, surfhi, initial_point, xs); double dx[3] = {initial_point[0] - xs[0], initial_point[1] - xs[1], initial_point[2] - xs[2]}; dist_surf = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]; if (dist_surf < dist_disk) { x = dx[0]; y = dx[1]; z = dx[2]; } else { x = point[0]; y = point[1]; z = point[2]; } return; } /* ---------------------------------------------------------------------- helper function extracted from region.cpp ------------------------------------------------------------------------- */ void FixIndent::point_on_line_segment(double *a, double *b, double *c, double *d) { double ba[3], ca[3]; MathExtra::sub3(b, a, ba); MathExtra::sub3(c, a, ca); double t = MathExtra::dot3(ca, ba) / MathExtra::dot3(ba, ba); if (t <= 0.0) { d[0] = a[0]; d[1] = a[1]; d[2] = a[2]; } else if (t >= 1.0) { d[0] = b[0]; d[1] = b[1]; d[2] = b[2]; } else { d[0] = a[0] + t * ba[0]; d[1] = a[1] + t * ba[1]; d[2] = a[2] + t * ba[2]; } } /* ---------------------------------------------------------------------- helper function extracted from region_cone.cpp ------------------------------------------------------------------------- */ double FixIndent::closest(double *x, double *near, double *nearest, double dsq) { double dx = x[0] - near[0]; double dy = x[1] - near[1]; double dz = x[2] - near[2]; double rsq = dx * dx + dy * dy + dz * dz; if (rsq >= dsq) return dsq; nearest[0] = near[0]; nearest[1] = near[1]; nearest[2] = near[2]; return rsq; }