// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_gyration_chunk.h" #include #include #include "atom.h" #include "update.h" #include "modify.h" #include "compute_chunk_atom.h" #include "domain.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeGyrationChunk::ComputeGyrationChunk(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), idchunk(nullptr), massproc(nullptr), masstotal(nullptr), com(nullptr), comall(nullptr), rg(nullptr), rgall(nullptr), rgt(nullptr), rgtall(nullptr) { if (narg < 4) error->all(FLERR,"Illegal compute gyration/chunk command"); // ID of compute chunk/atom idchunk = utils::strdup(arg[3]); ComputeGyrationChunk::init(); // optional args tensor = 0; int iarg = 4; while (iarg < narg) { if (strcmp(arg[iarg],"tensor") == 0) { tensor = 1; iarg++; } else error->all(FLERR,"Illegal compute gyration/chunk command"); } if (tensor) { array_flag = 1; size_array_cols = 6; size_array_rows = 0; size_array_rows_variable = 1; extarray = 0; } else { vector_flag = 1; size_vector = 0; size_vector_variable = 1; extvector = 0; } // chunk-based data nchunk = 1; maxchunk = 0; allocate(); } /* ---------------------------------------------------------------------- */ ComputeGyrationChunk::~ComputeGyrationChunk() { delete [] idchunk; memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(rg); memory->destroy(rgall); memory->destroy(rgt); memory->destroy(rgtall); } /* ---------------------------------------------------------------------- */ void ComputeGyrationChunk::init() { int icompute = modify->find_compute(idchunk); if (icompute < 0) error->all(FLERR,"Chunk/atom compute does not exist for " "compute gyration/chunk"); cchunk = (ComputeChunkAtom *) modify->compute[icompute]; if (strcmp(cchunk->style,"chunk/atom") != 0) error->all(FLERR,"Compute gyration/chunk does not use chunk/atom compute"); } /* ---------------------------------------------------------------------- */ void ComputeGyrationChunk::compute_vector() { int i,index; double dx,dy,dz,massone; double unwrap[3]; invoked_array = update->ntimestep; com_chunk(); int *ichunk = cchunk->ichunk; for (i = 0; i < nchunk; i++) rg[i] = 0.0; // compute Rg for each chunk double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i]-1; if (index < 0) continue; domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rg[index] += (dx*dx + dy*dy + dz*dz) * massone; } MPI_Allreduce(rg,rgall,nchunk,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < nchunk; i++) if (masstotal[i] > 0.0) rgall[i] = sqrt(rgall[i]/masstotal[i]); } /* ---------------------------------------------------------------------- */ void ComputeGyrationChunk::compute_array() { int i,j,index; double dx,dy,dz,massone; double unwrap[3]; invoked_array = update->ntimestep; com_chunk(); int *ichunk = cchunk->ichunk; for (i = 0; i < nchunk; i++) for (j = 0; j < 6; j++) rgt[i][j] = 0.0; double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i]-1; if (index < 0) continue; domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rgt[index][0] += dx*dx * massone; rgt[index][1] += dy*dy * massone; rgt[index][2] += dz*dz * massone; rgt[index][3] += dx*dy * massone; rgt[index][4] += dx*dz * massone; rgt[index][5] += dy*dz * massone; } if (nchunk) MPI_Allreduce(&rgt[0][0],&rgtall[0][0],nchunk*6,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < nchunk; i++) { if (masstotal[i] > 0.0) { for (j = 0; j < 6; j++) rgtall[i][j] = rgtall[i][j]/masstotal[i]; } } } /* ---------------------------------------------------------------------- calculate per-chunk COM, used by both scalar and tensor ------------------------------------------------------------------------- */ void ComputeGyrationChunk::com_chunk() { int index; double massone; double unwrap[3]; // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); int *ichunk = cchunk->ichunk; if (nchunk > maxchunk) allocate(); if (tensor) size_array_rows = nchunk; else size_vector = nchunk; // zero local per-chunk values for (int i = 0; i < nchunk; i++) { massproc[i] = 0.0; com[i][0] = com[i][1] = com[i][2] = 0.0; } // compute COM for each chunk double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i]-1; if (index < 0) continue; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; domain->unmap(x[i],image[i],unwrap); massproc[index] += massone; com[index][0] += unwrap[0] * massone; com[index][1] += unwrap[1] * massone; com[index][2] += unwrap[2] * massone; } MPI_Allreduce(massproc,masstotal,nchunk,MPI_DOUBLE,MPI_SUM,world); MPI_Allreduce(&com[0][0],&comall[0][0],3*nchunk,MPI_DOUBLE,MPI_SUM,world); for (int i = 0; i < nchunk; i++) { if (masstotal[i] > 0.0) { comall[i][0] /= masstotal[i]; comall[i][1] /= masstotal[i]; comall[i][2] /= masstotal[i]; } } } /* ---------------------------------------------------------------------- lock methods: called by fix ave/time these methods insure vector/array size is locked for Nfreq epoch by passing lock info along to compute chunk/atom ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- increment lock counter ------------------------------------------------------------------------- */ void ComputeGyrationChunk::lock_enable() { cchunk->lockcount++; } /* ---------------------------------------------------------------------- decrement lock counter in compute chunk/atom, it if still exists ------------------------------------------------------------------------- */ void ComputeGyrationChunk::lock_disable() { int icompute = modify->find_compute(idchunk); if (icompute >= 0) { cchunk = (ComputeChunkAtom *) modify->compute[icompute]; cchunk->lockcount--; } } /* ---------------------------------------------------------------------- calculate and return # of chunks = length of vector/array ------------------------------------------------------------------------- */ int ComputeGyrationChunk::lock_length() { nchunk = cchunk->setup_chunks(); return nchunk; } /* ---------------------------------------------------------------------- set the lock from startstep to stopstep ------------------------------------------------------------------------- */ void ComputeGyrationChunk::lock(Fix *fixptr, bigint startstep, bigint stopstep) { cchunk->lock(fixptr,startstep,stopstep); } /* ---------------------------------------------------------------------- unset the lock ------------------------------------------------------------------------- */ void ComputeGyrationChunk::unlock(Fix *fixptr) { cchunk->unlock(fixptr); } /* ---------------------------------------------------------------------- free and reallocate per-chunk arrays ------------------------------------------------------------------------- */ void ComputeGyrationChunk::allocate() { memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(rg); memory->destroy(rgall); memory->destroy(rgt); memory->destroy(rgtall); maxchunk = nchunk; memory->create(massproc,maxchunk,"gyration/chunk:massproc"); memory->create(masstotal,maxchunk,"gyration/chunk:masstotal"); memory->create(com,maxchunk,3,"gyration/chunk:com"); memory->create(comall,maxchunk,3,"gyration/chunk:comall"); if (tensor) { memory->create(rgt,maxchunk,6,"gyration/chunk:rgt"); memory->create(rgtall,maxchunk,6,"gyration/chunk:rgtall"); array = rgtall; } else { memory->create(rg,maxchunk,"gyration/chunk:rg"); memory->create(rgall,maxchunk,"gyration/chunk:rgall"); vector = rgall; } } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeGyrationChunk::memory_usage() { double bytes = (bigint) maxchunk * 2 * sizeof(double); bytes += (double) maxchunk * 2*3 * sizeof(double); if (tensor) bytes += (double) maxchunk * 2*6 * sizeof(double); else bytes += (double) maxchunk * 2 * sizeof(double); return bytes; }