LAMMPS data file via write_data, version 24 Oct 2015-ICMS, timestep = 44 23 atoms 7 atom types 23 bonds 9 bond types 39 angles 16 angle types 54 dihedrals 19 dihedral types 7 impropers 3 improper types -9.8334503200000001e-01 4.1194155219999997e+00 xlo xhi -6.4800081250000003e+00 2.8460192680000000e+00 ylo yhi -3.2154743670000001e+00 1.4167015549999999e+00 zlo zhi Masses 1 14.0067 2 1.00797 3 12.0112 4 1.00797 5 12.0112 6 15.9994 7 12.0112 Pair Coeffs # lj/cut/coul/cut 1 0.167 3.50123 2 0 0 3 0.16 3.47451 4 0.038 2.44997 5 0.148 3.61705 6 0.228 2.85978 7 0.148 3.61705 Bond Coeffs # harmonic 1 356.599 1.47 2 457.459 1.026 3 340.618 1.105 4 283.092 1.52 5 322.716 1.526 6 540 1.25 7 283.092 1.51 8 480 1.34 9 363.416 1.08 Angle Coeffs # harmonic 1 41.6 110 2 36 105.5 3 57.3 109.5 4 50 109.5 5 50 109.5 6 45 109.5 7 44.4 110 8 46.6 110.5 9 68 120 10 145 123 11 46.6 110.5 12 39.5 106.4 13 44.4 110 14 44.2 120 15 90 120 16 37 120 Dihedral Coeffs # harmonic 1 0.0889 1 3 2 0.0889 1 3 3 0.0889 1 3 4 0 1 0 5 0 1 0 6 0 1 0 7 0.1581 1 3 8 0.1581 1 3 9 0.1581 1 3 10 0.1581 1 3 11 0.1581 1 3 12 0.1581 1 3 13 0 1 2 14 0 1 2 15 3 -1 2 16 3 -1 2 17 3 -1 2 18 3 -1 2 19 3 -1 2 Improper Coeffs # cvff 1 11.6 -1 2 2 0.37 -1 2 3 0.37 -1 2 Atoms # full 1 1 1 -4.4999999999999998e-02 3.8261840200485547e-01 5.7568175596741739e-02 4.2801763244488256e-02 0 0 0 2 1 2 2.8000000000000003e-01 -3.6005159659383584e-01 -5.6546886220350190e-01 2.9537901651980475e-02 0 0 0 3 1 2 2.8000000000000003e-01 3.0100551103530615e-01 8.4002757097142589e-01 6.6621710081984697e-01 0 0 0 4 1 2 2.8000000000000003e-01 3.2665828846824313e-01 9.9583350647735369e-01 -2.6821945552159543e-01 0 0 0 5 1 3 -7.8000000000000000e-02 1.8174540108895378e+00 -4.1007465970234902e-01 2.3545687525165123e-04 0 0 0 6 1 4 5.2999999999999999e-02 2.1255863666810177e+00 -8.4945007572399811e-01 9.4150438263016889e-01 0 0 0 7 1 5 2.9740000000000000e-01 1.5936523220335395e+00 9.9181356345514471e-01 2.9065680454745447e-03 0 0 0 8 1 6 -5.3369999999999995e-01 2.4168434404751551e+00 1.8906151285859232e+00 -4.4042415883673421e-02 0 0 0 9 1 6 -5.3369999999999995e-01 3.2665828846824319e-01 9.9583350647735380e-01 -2.6821945552159543e-01 0 0 0 10 1 3 -1.0600000000000000e-01 2.2708723215936835e+00 -8.4870387460596119e-01 -1.3419681155517431e+00 0 0 0 11 1 4 5.2999999999999999e-02 1.8402581484948779e+00 -2.1026565000174635e-01 -2.1654506176791681e+00 0 0 0 12 1 4 5.2999999999999999e-02 3.3836324069843760e+00 -7.2303834518187504e-01 -1.3997057234448769e+00 0 0 0 13 1 7 0.0000000000000000e+00 1.8874447010064574e+00 -2.2514550380851373e+00 -1.4702072252230289e+00 0 0 0 14 1 7 -1.3053000000000001e-01 7.6676774289787297e-01 -2.6507388229886399e+00 -2.1197704322391493e+00 0 0 0 15 1 4 1.3053000000000001e-01 1.3857431374227785e-01 -1.9118939376823751e+00 -2.5906999609283408e+00 0 0 0 16 1 7 -1.3053000000000001e-01 4.7076429192482738e-01 -3.9448181151047566e+00 -2.1899898997699121e+00 0 0 0 17 1 4 1.3053000000000001e-01 -3.9784223514932859e-01 -4.2534808244922537e+00 -2.7214259342391154e+00 0 0 0 18 1 7 -1.3053000000000001e-01 1.2806541578230615e+00 -4.8335445220038871e+00 -1.6231739104873204e+00 0 0 0 19 1 4 1.3053000000000001e-01 1.0467859574258771e+00 -5.9371331003482526e+00 -1.7136660236221883e+00 0 0 0 20 1 7 -1.3053000000000001e-01 2.3739130431542237e+00 -4.4573764826053450e+00 -9.5574007263044469e-01 0 0 0 21 1 4 1.3053000000000001e-01 3.0247174456345798e+00 -5.1702484972417242e+00 -5.0912236698220592e-01 0 0 0 22 1 7 -1.3053000000000001e-01 2.6589619129160513e+00 -3.1716801149521614e+00 -8.5860168874135101e-01 0 0 0 23 1 4 1.3053000000000001e-01 3.5283481490890991e+00 -2.8336668626399786e+00 -3.1197011380150330e-01 0 0 0 Velocities 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 Bonds 1 1 1 5 2 2 1 2 3 2 1 3 4 2 1 4 5 3 5 6 6 4 5 7 7 5 5 10 8 6 7 9 9 6 7 8 10 3 10 11 11 3 10 12 12 7 10 13 13 8 13 14 14 8 13 22 15 8 14 16 16 9 15 14 17 8 16 18 18 9 17 16 19 8 18 20 20 9 19 18 21 8 20 22 22 9 21 20 23 9 23 22 Angles 1 1 2 1 5 2 1 3 1 5 3 1 4 1 5 4 2 2 1 3 5 2 2 1 4 6 2 3 1 4 7 3 1 5 6 8 4 1 5 7 9 5 1 5 10 10 6 6 5 7 11 7 10 5 6 12 8 10 5 7 13 9 5 7 9 14 9 5 7 8 15 10 9 7 8 16 7 5 10 11 17 7 5 10 12 18 11 5 10 13 19 12 11 10 12 20 13 11 10 13 21 13 12 10 13 22 14 10 13 14 23 14 10 13 22 24 15 14 13 22 25 16 15 14 13 26 15 13 14 16 27 16 15 14 16 28 16 17 16 14 29 15 14 16 18 30 16 17 16 18 31 16 19 18 16 32 15 16 18 20 33 16 19 18 20 34 16 21 20 18 35 15 18 20 22 36 16 21 20 22 37 16 23 22 20 38 15 20 22 13 39 16 23 22 13 Dihedrals 1 1 2 1 5 6 2 2 2 1 5 7 3 3 2 1 5 10 4 1 3 1 5 6 5 2 3 1 5 7 6 3 3 1 5 10 7 1 4 1 5 6 8 2 4 1 5 7 9 3 4 1 5 10 10 4 1 5 7 9 11 4 1 5 7 8 12 5 6 5 7 9 13 5 6 5 7 8 14 6 10 5 7 9 15 6 10 5 7 8 16 7 1 5 10 11 17 7 1 5 10 12 18 8 1 5 10 13 19 9 6 5 10 11 20 9 6 5 10 12 21 10 6 5 10 13 22 12 7 5 10 13 23 11 11 10 5 7 24 11 12 10 5 7 25 13 5 10 13 14 26 13 5 10 13 22 27 14 11 10 13 14 28 14 11 10 13 22 29 14 12 10 13 14 30 14 12 10 13 22 31 15 10 13 14 15 32 16 10 13 14 16 33 18 22 13 14 16 34 16 10 13 22 20 35 15 10 13 22 23 36 18 14 13 22 20 37 17 15 14 13 22 38 18 13 14 16 18 39 19 15 14 16 17 40 17 15 14 16 18 41 17 17 16 14 13 42 18 14 16 18 20 43 19 17 16 18 19 44 17 17 16 18 20 45 17 19 18 16 14 46 18 16 18 20 22 47 19 19 18 20 21 48 17 19 18 20 22 49 17 21 20 18 16 50 18 18 20 22 13 51 19 21 20 22 23 52 17 21 20 22 13 53 17 23 22 13 14 54 17 23 22 20 18 Impropers 1 1 5 7 9 8 2 2 10 13 14 22 3 3 15 14 13 16 4 3 17 16 14 18 5 3 19 18 16 20 6 3 21 20 18 22 7 3 23 22 20 13