/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mingjian Wen (University of Minnesota) e-mail: wenxx151@umn.edu, wenxx151@gmail.com This implements the DRIP model as described in M. Wen, S. Carr, S. Fang, E. Kaxiras, and E. B. Tadmor, Phys. Rev. B, 98, 235404 (2018). ------------------------------------------------------------------------- */ #include "pair_drip.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include "neigh_request.h" #include "neighbor.h" #include "potential_file_reader.h" #include #include using namespace LAMMPS_NS; #define MAXLINE 1024 #define DELTA 4 #define HALF 0.5 // inline functions static inline double dot(double const *x, double const *y) { return x[0] * y[0] + x[1] * y[1] + x[2] * y[2]; } static inline void mat_dot_vec(PairDRIP::V3 const *X, double const *y, double *const z) { for (int k = 0; k < 3; k++) { z[k] = X[k][0] * y[0] + X[k][1] * y[1] + X[k][2] * y[2]; } } /* ---------------------------------------------------------------------- */ PairDRIP::PairDRIP(LAMMPS *lmp) : Pair(lmp) { single_enable = 0; restartinfo = 0; manybody_flag = 1; centroidstressflag = CENTROID_NOTAVAIL; unit_convert_flag = utils::get_supported_conversions(utils::ENERGY); params = nullptr; nearest3neigh = nullptr; cutmax = 0.0; } /* ---------------------------------------------------------------------- */ PairDRIP::~PairDRIP() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } memory->destroy(params); memory->destroy(elem2param); memory->destroy(nearest3neigh); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairDRIP::init_style() { if (force->newton_pair == 0) error->all(FLERR, "Pair style drip requires newton pair on"); if (!atom->molecule_flag) error->all(FLERR, "Pair style drip requires atom attribute molecule"); // need a full neighbor list, including neighbors of ghosts int irequest = neighbor->request(this, instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->ghost = 1; } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairDRIP::allocate() { allocated = 1; int n = atom->ntypes + 1; memory->create(setflag, n, n, "pair:setflag"); memory->create(cutsq, n, n, "pair:cutsq"); map = new int[n]; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairDRIP::settings(int narg, char ** /* arg */) { if (narg != 0) error->all(FLERR, "Illegal pair_style command"); if (!utils::strmatch(force->pair_style, "^hybrid/overlay")) error->all(FLERR, "Pair style drip must be used as sub-style with hybrid/overlay"); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairDRIP::coeff(int narg, char **arg) { if (!allocated) allocate(); map_element2type(narg - 3, arg + 3); read_file(arg[2]); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairDRIP::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR, "All pair coeffs are not set"); int itype = map[i]; int jtype = map[j]; int iparam_ij = elem2param[itype][jtype]; Param &p = params[iparam_ij]; // max cutoff is the main cutoff plus the normal cutoff such that return p.rcut + p.ncut; } /* ---------------------------------------------------------------------- read DRIP file ------------------------------------------------------------------------- */ void PairDRIP::read_file(char *filename) { memory->sfree(params); params = nullptr; nparams = maxparam = 0; // open file on proc 0 if (comm->me == 0) { PotentialFileReader reader(lmp, filename, "drip", unit_convert_flag); char *line; // transparently convert units for supported conversions int unit_convert = reader.get_unit_convert(); double conversion_factor = utils::get_conversion_factor(utils::ENERGY, unit_convert); while ((line = reader.next_line(NPARAMS_PER_LINE))) { try { ValueTokenizer values(line); std::string iname = values.next_string(); std::string jname = values.next_string(); // ielement,jelement = 1st args // if both args are in element list, then parse this line // else skip to next entry in file int ielement, jelement; for (ielement = 0; ielement < nelements; ielement++) if (iname == elements[ielement]) break; if (ielement == nelements) continue; for (jelement = 0; jelement < nelements; jelement++) if (jname == elements[jelement]) break; if (jelement == nelements) continue; // expand storage, if needed if (nparams == maxparam) { maxparam += DELTA; params = (Param *) memory->srealloc(params, maxparam * sizeof(Param), "pair:params"); // make certain all addional allocated storage is initialized // to avoid false positives when checking with valgrind memset(params + nparams, 0, DELTA * sizeof(Param)); } params[nparams].ielement = ielement; params[nparams].jelement = jelement; params[nparams].C0 = values.next_double(); params[nparams].C2 = values.next_double(); params[nparams].C4 = values.next_double(); params[nparams].C = values.next_double(); params[nparams].delta = values.next_double(); params[nparams].lambda = values.next_double(); params[nparams].A = values.next_double(); params[nparams].z0 = values.next_double(); params[nparams].B = values.next_double(); params[nparams].eta = values.next_double(); params[nparams].rhocut = values.next_double(); params[nparams].rcut = values.next_double(); params[nparams].ncut = values.next_double(); } catch (TokenizerException &e) { error->one(FLERR, e.what()); } if (unit_convert) { params[nparams].C0 *= conversion_factor; params[nparams].C2 *= conversion_factor; params[nparams].C4 *= conversion_factor; params[nparams].C *= conversion_factor; params[nparams].A *= conversion_factor; params[nparams].B *= conversion_factor; } // convenient precomputations params[nparams].rhocutsq = params[nparams].rhocut * params[nparams].rhocut; params[nparams].rcutsq = params[nparams].rcut * params[nparams].rcut; params[nparams].ncutsq = params[nparams].ncut * params[nparams].ncut; nparams++; } } MPI_Bcast(&nparams, 1, MPI_INT, 0, world); MPI_Bcast(&maxparam, 1, MPI_INT, 0, world); if (comm->me != 0) { params = (Param *) memory->srealloc(params, maxparam * sizeof(Param), "pair:params"); } MPI_Bcast(params, maxparam * sizeof(Param), MPI_BYTE, 0, world); memory->destroy(elem2param); memory->create(elem2param, nelements, nelements, "pair:elem2param"); for (int i = 0; i < nelements; i++) { for (int j = 0; j < nelements; j++) { int n = -1; for (int m = 0; m < nparams; m++) { if (i == params[m].ielement && j == params[m].jelement) { if (n >= 0) error->all(FLERR, "Potential file has duplicate entry"); n = m; } } if (n < 0) error->all(FLERR, "Potential file is missing an entry"); elem2param[i][j] = n; } } } /* ---------------------------------------------------------------------- */ void PairDRIP::compute(int eflag, int vflag) { int i, j, ii, jj, inum, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, rsq; int *ilist, *jlist, *numneigh, **firstneigh; double ni[3]; double dni_dri[3][3], dni_drnb1[3][3]; double dni_drnb2[3][3], dni_drnb3[3][3]; ev_init(eflag, vflag); double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; find_nearest3neigh(); for (ii = 0; ii < inum; ii++) { i = ilist[ii]; if (nearest3neigh[i][0] == -1) { continue; } xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = map[type[i]]; jlist = firstneigh[i]; jnum = numneigh[i]; // normal and its derivatives w.r.t. atom i and its 3 nearest neighbors calc_normal(i, ni, dni_dri, dni_drnb1, dni_drnb2, dni_drnb3); double fi[3] = {0., 0., 0.}; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; if (nearest3neigh[j][0] == -1) { continue; } jtype = map[type[j]]; delx = x[j][0] - xtmp; dely = x[j][1] - ytmp; delz = x[j][2] - ztmp; rsq = delx * delx + dely * dely + delz * delz; int iparam_ij = elem2param[itype][jtype]; Param &p = params[iparam_ij]; double rcutsq = p.rcutsq; // only include the interaction between different layers if (rsq < rcutsq && atom->molecule[i] != atom->molecule[j]) { double fj[3] = {0., 0., 0.}; double rvec[3] = {delx, dely, delz}; double phi_attr = calc_attractive(p, rsq, rvec, fi, fj); double phi_repul = calc_repulsive(i, j, p, rsq, rvec, ni, dni_dri, dni_drnb1, dni_drnb2, dni_drnb3, fi, fj); if (eflag) evdwl = HALF * (phi_repul + phi_attr); else evdwl = 0.0; if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, 0, 0, 0, 0); f[j][0] += fj[0]; f[j][1] += fj[1]; f[j][2] += fj[2]; if (vflag_either) v_tally2_newton(j, fj, x[j]); } } //loop over jj f[i][0] += fi[0]; f[i][1] += fi[1]; f[i][2] += fi[2]; if (vflag_either) v_tally2_newton(i, fi, x[i]); } // loop over ii if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- Attractive part, i.e. the r^(-6) part ------------------------------------------------------------------------- */ double PairDRIP::calc_attractive(Param &p, double const rsq, double const *rvec, double *const fi, double *const fj) { double const z0 = p.z0; double const A = p.A; double const cutoff = p.rcut; double const r = sqrt(rsq); double roz0_sq = rsq / (z0 * z0); double dtp; double tp = tap(r, cutoff, dtp); double r6 = A / (roz0_sq * roz0_sq * roz0_sq); double dr6 = -6 * r6 / r; double phi = -r6 * tp; double fpair = -HALF * (r6 * dtp + dr6 * tp); fi[0] += rvec[0] * fpair / r; fi[1] += rvec[1] * fpair / r; fi[2] += rvec[2] * fpair / r; fj[0] -= rvec[0] * fpair / r; fj[1] -= rvec[1] * fpair / r; fj[2] -= rvec[2] * fpair / r; return phi; } /* ---------------------------------------------------------------------- Repulsive part that depends on transverse distance and dihedral angle ------------------------------------------------------------------------- */ double PairDRIP::calc_repulsive(int const i, int const j, Param &p, double const rsq, double const *rvec, double const *ni, V3 const *dni_dri, V3 const *dni_drnb1, V3 const *dni_drnb2, V3 const *dni_drnb3, double *const fi, double *const fj) { double **f = atom->f; double **x = atom->x; double C0 = p.C0; double C2 = p.C2; double C4 = p.C4; double C = p.C; double delta = p.delta; double lambda = p.lambda; double z0 = p.z0; double cutoff = p.rcut; // nearest 3 neighbors of atoms i and j int nbi1 = nearest3neigh[i][0]; int nbi2 = nearest3neigh[i][1]; int nbi3 = nearest3neigh[i][2]; int nbj1 = nearest3neigh[j][0]; int nbj2 = nearest3neigh[j][1]; int nbj3 = nearest3neigh[j][2]; double fnbi1[3]; double fnbi2[3]; double fnbi3[3]; double fnbj1[3]; double fnbj2[3]; double fnbj3[3]; V3 dgij_dri; V3 dgij_drj; V3 dgij_drk1; V3 dgij_drk2; V3 dgij_drk3; V3 dgij_drl1; V3 dgij_drl2; V3 dgij_drl3; V3 drhosqij_dri; V3 drhosqij_drj; V3 drhosqij_drnb1; V3 drhosqij_drnb2; V3 drhosqij_drnb3; double r = sqrt(rsq); // derivative of rhosq w.r.t. atoms i j and the nearests 3 neighs of i get_drhosqij(rvec, ni, dni_dri, dni_drnb1, dni_drnb2, dni_drnb3, drhosqij_dri, drhosqij_drj, drhosqij_drnb1, drhosqij_drnb2, drhosqij_drnb3); // transverse decay function f(rho) and its derivative w.r.t. rhosq double rhosqij; double dtdij; double tdij = td(C0, C2, C4, delta, rvec, r, ni, rhosqij, dtdij); // dihedral angle function and its derivateives double dgij_drhosq; double gij = dihedral(i, j, p, rhosqij, dgij_drhosq, dgij_dri, dgij_drj, dgij_drk1, dgij_drk2, dgij_drk3, dgij_drl1, dgij_drl2, dgij_drl3); double V2 = C + tdij + gij; // tap part double dtp; double tp = tap(r, cutoff, dtp); // exponential part double V1 = exp(-lambda * (r - z0)); double dV1 = -V1 * lambda; // total energy double phi = tp * V1 * V2; for (int k = 0; k < 3; k++) { // forces due to derivatives of tap and V1 double tmp = HALF * (dtp * V1 + tp * dV1) * V2 * rvec[k] / r; fi[k] += tmp; fj[k] -= tmp; // contributions from transverse decay part tdij and the dihedral part gij // derivative of V2 contribute to atoms i, j fi[k] -= HALF * tp * V1 * ((dtdij + dgij_drhosq) * drhosqij_dri[k] + dgij_dri[k]); fj[k] -= HALF * tp * V1 * ((dtdij + dgij_drhosq) * drhosqij_drj[k] + dgij_drj[k]); // derivative of V2 contribute to nearest 3 neighs of atom i fnbi1[k] = -HALF * tp * V1 * ((dtdij + dgij_drhosq) * drhosqij_drnb1[k] + dgij_drk1[k]); fnbi2[k] = -HALF * tp * V1 * ((dtdij + dgij_drhosq) * drhosqij_drnb2[k] + dgij_drk2[k]); fnbi3[k] = -HALF * tp * V1 * ((dtdij + dgij_drhosq) * drhosqij_drnb3[k] + dgij_drk3[k]); // derivative of V2 contribute to nearest 3 neighs of atom j fnbj1[k] = -HALF * tp * V1 * dgij_drl1[k]; fnbj2[k] = -HALF * tp * V1 * dgij_drl2[k]; fnbj3[k] = -HALF * tp * V1 * dgij_drl3[k]; } for (int k = 0; k < 3; k++) { f[nbi1][k] += fnbi1[k]; f[nbi2][k] += fnbi2[k]; f[nbi3][k] += fnbi3[k]; f[nbj1][k] += fnbj1[k]; f[nbj2][k] += fnbj2[k]; f[nbj3][k] += fnbj3[k]; } if (vflag_either) { v_tally2_newton(nbi1, fnbi1, x[nbi1]); v_tally2_newton(nbi2, fnbi2, x[nbi2]); v_tally2_newton(nbi3, fnbi3, x[nbi3]); v_tally2_newton(nbj1, fnbj1, x[nbj1]); v_tally2_newton(nbj2, fnbj2, x[nbj2]); v_tally2_newton(nbj3, fnbj3, x[nbj3]); } return phi; } /* ---------------------------------------------------------------------- */ void PairDRIP::find_nearest3neigh() { int i, j, ii, jj, allnum, inum, jnum, itype, jtype, size; double xtmp, ytmp, ztmp, delx, dely, delz, rsq; int *ilist, *jlist, *numneigh, **firstneigh; double **x = atom->x; int *type = atom->type; allnum = list->inum + list->gnum; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; size = allnum; memory->destroy(nearest3neigh); memory->create(nearest3neigh, size, 3, "pair:nearest3neigh"); for (ii = 0; ii < allnum; ii++) { i = ilist[ii]; // If "NULL" used in pair_coeff, i could be larger than allnum if (i >= size) { size = i + 1; memory->grow(nearest3neigh, size, 3, "pair:nearest3neigh"); } xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = map[type[i]]; jlist = firstneigh[i]; jnum = numneigh[i]; // init nb1 to be the 1st nearest neigh, nb3 the 3rd nearest int nb1 = -1; int nb2 = -1; int nb3 = -1; double nb1_rsq = 1.0e10 + 1; double nb2_rsq = 2.0e10; double nb3_rsq = 3.0e10; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = map[type[j]]; delx = x[j][0] - xtmp; dely = x[j][1] - ytmp; delz = x[j][2] - ztmp; rsq = delx * delx + dely * dely + delz * delz; int iparam_ij = elem2param[itype][jtype]; double ncutsq = params[iparam_ij].ncutsq; if (rsq < ncutsq && atom->molecule[i] == atom->molecule[j]) { // find the 3 nearest neigh if (rsq < nb1_rsq) { nb3 = nb2; nb2 = nb1; nb1 = j; nb3_rsq = nb2_rsq; nb2_rsq = nb1_rsq; nb1_rsq = rsq; } else if (rsq < nb2_rsq) { nb3 = nb2; nb2 = j; nb3_rsq = nb2_rsq; nb2_rsq = rsq; } else if (rsq < nb3_rsq) { nb3 = j; nb3_rsq = rsq; } } } // loop over jj // store neighbors to be used later to compute normal if (nb3_rsq >= 1.0e10) { if (i < inum) { error->one(FLERR, "No enough neighbors to construct normal. Check the " "configuration to see whether atoms fly away."); } else { // This only happens for ghost atoms that are near the boundary of the // domain (i.e. r > r_cut + n_cut). These ghost atoms will not be // the i j atoms in the compute function, but only neighbors of j atoms. // It is allowed not to have three neighbors for these atoms, since // their normals are not needed. nearest3neigh[i][0] = -1; nearest3neigh[i][1] = -1; nearest3neigh[i][2] = -1; } } else { nearest3neigh[i][0] = nb1; nearest3neigh[i][1] = nb2; nearest3neigh[i][2] = nb3; } } // loop over ii } /* ---------------------------------------------------------------------- */ void PairDRIP::calc_normal(int const i, double *const normal, V3 *const dn_dri, V3 *const dn_drk1, V3 *const dn_drk2, V3 *const dn_drk3) { int k1 = nearest3neigh[i][0]; int k2 = nearest3neigh[i][1]; int k3 = nearest3neigh[i][2]; // normal does not depend on i, setting to zero for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { dn_dri[j][k] = 0.0; } } // get normal and derives of normal w.r.t to its 3 nearest neighbors double **x = atom->x; deriv_cross(x[k1], x[k2], x[k3], normal, dn_drk1, dn_drk2, dn_drk3); } /* ---------------------------------------------------------------------- */ void PairDRIP::get_drhosqij(double const *rij, double const *ni, V3 const *dni_dri, V3 const *dni_drn1, V3 const *dni_drn2, V3 const *dni_drn3, double *const drhosq_dri, double *const drhosq_drj, double *const drhosq_drn1, double *const drhosq_drn2, double *const drhosq_drn3) { int k; double ni_dot_rij = 0; double dni_dri_dot_rij[3]; double dni_drn1_dot_rij[3]; double dni_drn2_dot_rij[3]; double dni_drn3_dot_rij[3]; ni_dot_rij = dot(ni, rij); mat_dot_vec(dni_dri, rij, dni_dri_dot_rij); mat_dot_vec(dni_drn1, rij, dni_drn1_dot_rij); mat_dot_vec(dni_drn2, rij, dni_drn2_dot_rij); mat_dot_vec(dni_drn3, rij, dni_drn3_dot_rij); for (k = 0; k < 3; k++) { drhosq_dri[k] = -2 * rij[k] - 2 * ni_dot_rij * (-ni[k] + dni_dri_dot_rij[k]); drhosq_drj[k] = 2 * rij[k] - 2 * ni_dot_rij * ni[k]; drhosq_drn1[k] = -2 * ni_dot_rij * dni_drn1_dot_rij[k]; drhosq_drn2[k] = -2 * ni_dot_rij * dni_drn2_dot_rij[k]; drhosq_drn3[k] = -2 * ni_dot_rij * dni_drn3_dot_rij[k]; } } /* ---------------------------------------------------------------------- derivartive of transverse decay function f(rho) w.r.t. rho ------------------------------------------------------------------------- */ double PairDRIP::td(double C0, double C2, double C4, double delta, double const *const rvec, double r, const double *const n, double &rho_sq, double &dtd) { double n_dot_r = dot(n, rvec); rho_sq = r * r - n_dot_r * n_dot_r; // in case n is [0, 0, 1] and rho_sq is negative due to numerical error if (rho_sq < 0) { rho_sq = 0; } double del_sq = delta * delta; double rod_sq = rho_sq / del_sq; double td = exp(-rod_sq) * (C0 + rod_sq * (C2 + rod_sq * C4)); dtd = -td / del_sq + exp(-rod_sq) * (C2 + 2 * C4 * rod_sq) / del_sq; return td; } /* ---------------------------------------------------------------------- derivartive of dihedral angle func gij w.r.t rho, and atom positions ------------------------------------------------------------------------- */ double PairDRIP::dihedral(const int i, const int j, Param &p, double const rhosq, double &d_drhosq, double *const d_dri, double *const d_drj, double *const d_drk1, double *const d_drk2, double *const d_drk3, double *const d_drl1, double *const d_drl2, double *const d_drl3) { double **x = atom->x; // get parameter double B = p.B; double eta = p.eta; double cut_rhosq = p.rhocutsq; // local vars double cos_kl[3][3]; // cos_omega_k1ijl1, cos_omega_k1ijl2 ... double d_dcos_kl[3][3]; // deriv of dihedral w.r.t to cos_omega_kijl double dcos_kl[3][3][4][3]; // 4 indicates k, i, j, l. e.g. dcoskl[0][1][0] // means dcos_omega_k1ijl2 / drk // if larger than cutoff of rho, return 0 if (rhosq >= cut_rhosq) { d_drhosq = 0; for (int dim = 0; dim < 3; dim++) { d_dri[dim] = 0; d_drj[dim] = 0; d_drk1[dim] = 0; d_drk2[dim] = 0; d_drk3[dim] = 0; d_drl1[dim] = 0; d_drl2[dim] = 0; d_drl3[dim] = 0; } double dihe = 0.0; return dihe; } // 3 neighs of atoms i and j int k[3]; int l[3]; for (int m = 0; m < 3; m++) { k[m] = nearest3neigh[i][m]; l[m] = nearest3neigh[j][m]; } // cos_omega_kijl and the derivatives w.r.t coordinates for (int m = 0; m < 3; m++) { for (int n = 0; n < 3; n++) { cos_kl[m][n] = deriv_cos_omega(x[k[m]], x[i], x[j], x[l[n]], dcos_kl[m][n][0], dcos_kl[m][n][1], dcos_kl[m][n][2], dcos_kl[m][n][3]); } } double epart1 = exp(-eta * cos_kl[0][0] * cos_kl[0][1] * cos_kl[0][2]); double epart2 = exp(-eta * cos_kl[1][0] * cos_kl[1][1] * cos_kl[1][2]); double epart3 = exp(-eta * cos_kl[2][0] * cos_kl[2][1] * cos_kl[2][2]); double D2 = epart1 + epart2 + epart3; // cutoff function double d_drhosq_tap; double D0 = B * tap_rho(rhosq, cut_rhosq, d_drhosq_tap); // dihedral energy double dihe = D0 * D2; // deriv of dihedral w.r.t rhosq d_drhosq = B * d_drhosq_tap * D2; // deriv of dihedral w.r.t cos_omega_kijl d_dcos_kl[0][0] = -D0 * epart1 * eta * cos_kl[0][1] * cos_kl[0][2]; d_dcos_kl[0][1] = -D0 * epart1 * eta * cos_kl[0][0] * cos_kl[0][2]; d_dcos_kl[0][2] = -D0 * epart1 * eta * cos_kl[0][0] * cos_kl[0][1]; d_dcos_kl[1][0] = -D0 * epart2 * eta * cos_kl[1][1] * cos_kl[1][2]; d_dcos_kl[1][1] = -D0 * epart2 * eta * cos_kl[1][0] * cos_kl[1][2]; d_dcos_kl[1][2] = -D0 * epart2 * eta * cos_kl[1][0] * cos_kl[1][1]; d_dcos_kl[2][0] = -D0 * epart3 * eta * cos_kl[2][1] * cos_kl[2][2]; d_dcos_kl[2][1] = -D0 * epart3 * eta * cos_kl[2][0] * cos_kl[2][2]; d_dcos_kl[2][2] = -D0 * epart3 * eta * cos_kl[2][0] * cos_kl[2][1]; // initialization to be zero and later add values for (int dim = 0; dim < 3; dim++) { d_drk1[dim] = 0.; d_drk2[dim] = 0.; d_drk3[dim] = 0.; d_dri[dim] = 0.; d_drj[dim] = 0.; d_drl1[dim] = 0.; d_drl2[dim] = 0.; d_drl3[dim] = 0.; } for (int m = 0; m < 3; m++) { for (int dim = 0; dim < 3; dim++) { d_drk1[dim] += d_dcos_kl[0][m] * dcos_kl[0][m][0][dim]; d_drk2[dim] += d_dcos_kl[1][m] * dcos_kl[1][m][0][dim]; d_drk3[dim] += d_dcos_kl[2][m] * dcos_kl[2][m][0][dim]; d_drl1[dim] += d_dcos_kl[m][0] * dcos_kl[m][0][3][dim]; d_drl2[dim] += d_dcos_kl[m][1] * dcos_kl[m][1][3][dim]; d_drl3[dim] += d_dcos_kl[m][2] * dcos_kl[m][2][3][dim]; } for (int n = 0; n < 3; n++) { for (int dim = 0; dim < 3; dim++) { d_dri[dim] += d_dcos_kl[m][n] * dcos_kl[m][n][1][dim]; d_drj[dim] += d_dcos_kl[m][n] * dcos_kl[m][n][2][dim]; } } } return dihe; } /* ---------------------------------------------------------------------- compute cos(omega_kijl) and the derivateives ------------------------------------------------------------------------- */ double PairDRIP::deriv_cos_omega(double const *rk, double const *ri, double const *rj, double const *rl, double *const dcos_drk, double *const dcos_dri, double *const dcos_drj, double *const dcos_drl) { double ejik[3]; double eijl[3]; double tmp1[3]; double tmp2[3]; double dejik_dri[3][3]; double dejik_drj[3][3]; double dejik_drk[3][3]; double deijl_dri[3][3]; double deijl_drj[3][3]; double deijl_drl[3][3]; // ejik and derivatives // Note the returned dejik_dri ... are actually the transpose deriv_cross(ri, rj, rk, ejik, dejik_dri, dejik_drj, dejik_drk); // flip sign // deriv_cross computes rij cross rik, here we need rji cross rik for (int m = 0; m < 3; m++) { ejik[m] = -ejik[m]; for (int n = 0; n < 3; n++) { dejik_dri[m][n] = -dejik_dri[m][n]; dejik_drj[m][n] = -dejik_drj[m][n]; dejik_drk[m][n] = -dejik_drk[m][n]; } } // eijl and derivatives deriv_cross(rj, ri, rl, eijl, deijl_drj, deijl_dri, deijl_drl); // flip sign for (int m = 0; m < 3; m++) { eijl[m] = -eijl[m]; for (int n = 0; n < 3; n++) { deijl_drj[m][n] = -deijl_drj[m][n]; deijl_dri[m][n] = -deijl_dri[m][n]; deijl_drl[m][n] = -deijl_drl[m][n]; } } // dcos_drk mat_dot_vec(dejik_drk, eijl, dcos_drk); // dcos_dri mat_dot_vec(dejik_dri, eijl, tmp1); mat_dot_vec(deijl_dri, ejik, tmp2); for (int m = 0; m < 3; m++) { dcos_dri[m] = tmp1[m] + tmp2[m]; } // dcos_drj mat_dot_vec(dejik_drj, eijl, tmp1); mat_dot_vec(deijl_drj, ejik, tmp2); for (int m = 0; m < 3; m++) { dcos_drj[m] = tmp1[m] + tmp2[m]; } // dcos drl mat_dot_vec(deijl_drl, ejik, dcos_drl); // cos_oemga_kijl double cos_omega = dot(ejik, eijl); return cos_omega; } /* ---------------------------------------------------------------------- */ double PairDRIP::tap(double r, double cutoff, double &dtap) { double t; double r_min = 0; if (r <= r_min) { t = 1; dtap = 0; } else { double roc = (r - r_min) / (cutoff - r_min); double roc_sq = roc * roc; t = roc_sq * roc_sq * (-35.0 + 84.0 * roc + roc_sq * (-70.0 + 20.0 * roc)) + 1; dtap = roc_sq * roc / (cutoff - r_min) * (-140.0 + 420.0 * roc + roc_sq * (-420.0 + 140.0 * roc)); } return t; } /* ---------------------------------------------------------------------- */ double PairDRIP::tap_rho(double rhosq, double cut_rhosq, double &drhosq) { double roc_sq; double roc; double t; roc_sq = rhosq / cut_rhosq; roc = sqrt(roc_sq); t = roc_sq * roc_sq * (-35.0 + 84.0 * roc + roc_sq * (-70.0 + 20.0 * roc)) + 1; // Note this dtap/drho_sq not dtap/drho drhosq = roc_sq / cut_rhosq * (-70.0 + 210.0 * roc + roc_sq * (-210.0 + 70.0 * roc)); return t; } /* ---------------------------------------------------------------------- Compute the normalized cross product of two vector rkl, rkm, and the derivates w.r.t rk, rl, rm. Note, the returned dcross_drk, dcross_drl, and dcross_drm are actually the transpose. ------------------------------------------------------------------------- */ void PairDRIP::deriv_cross(double const *rk, double const *rl, double const *rm, double *const cross, V3 *const dcross_drk, V3 *const dcross_drl, V3 *const dcross_drm) { double x[3]; double y[3]; double p[3]; double q; double q_cubic; double d_invq_d_x0; double d_invq_d_x1; double d_invq_d_x2; double d_invq_d_y0; double d_invq_d_y1; double d_invq_d_y2; int i, j; // get x = rkl and y = rkm for (i = 0; i < 3; i++) { x[i] = rl[i] - rk[i]; y[i] = rm[i] - rk[i]; } // cross product p[0] = x[1] * y[2] - x[2] * y[1]; p[1] = x[2] * y[0] - x[0] * y[2]; p[2] = x[0] * y[1] - x[1] * y[0]; q = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]); // normalized cross cross[0] = p[0] / q; cross[1] = p[1] / q; cross[2] = p[2] / q; // compute derivatives // derivative of inverse q (i.e. 1/q) w.r.t x and y q_cubic = q * q * q; d_invq_d_x0 = (+p[1] * y[2] - p[2] * y[1]) / q_cubic; d_invq_d_x1 = (-p[0] * y[2] + p[2] * y[0]) / q_cubic; d_invq_d_x2 = (p[0] * y[1] - p[1] * y[0]) / q_cubic; d_invq_d_y0 = (-p[1] * x[2] + p[2] * x[1]) / q_cubic; d_invq_d_y1 = (p[0] * x[2] - p[2] * x[0]) / q_cubic; d_invq_d_y2 = (-p[0] * x[1] + p[1] * x[0]) / q_cubic; // dcross/drl transposed dcross_drl[0][0] = p[0] * d_invq_d_x0; dcross_drl[0][1] = -y[2] / q + p[1] * d_invq_d_x0; dcross_drl[0][2] = y[1] / q + p[2] * d_invq_d_x0; dcross_drl[1][0] = y[2] / q + p[0] * d_invq_d_x1; dcross_drl[1][1] = p[1] * d_invq_d_x1; dcross_drl[1][2] = -y[0] / q + p[2] * d_invq_d_x1; dcross_drl[2][0] = -y[1] / q + p[0] * d_invq_d_x2; dcross_drl[2][1] = y[0] / q + p[1] * d_invq_d_x2; dcross_drl[2][2] = p[2] * d_invq_d_x2; // dcross/drm transposed dcross_drm[0][0] = p[0] * d_invq_d_y0; dcross_drm[0][1] = x[2] / q + p[1] * d_invq_d_y0; dcross_drm[0][2] = -x[1] / q + p[2] * d_invq_d_y0; dcross_drm[1][0] = -x[2] / q + p[0] * d_invq_d_y1; dcross_drm[1][1] = p[1] * d_invq_d_y1; dcross_drm[1][2] = x[0] / q + p[2] * d_invq_d_y1; dcross_drm[2][0] = x[1] / q + p[0] * d_invq_d_y2; dcross_drm[2][1] = -x[0] / q + p[1] * d_invq_d_y2; dcross_drm[2][2] = p[2] * d_invq_d_y2; // dcross/drk transposed for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { dcross_drk[i][j] = -(dcross_drl[i][j] + dcross_drm[i][j]); } } }