/* //@HEADER // ************************************************************************ // // Kokkos v. 2.0 // Copyright (2014) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact H. Carter Edwards (hcedwar@sandia.gov) // // ************************************************************************ //@HEADER */ #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP #define KOKKOS_UNITTEST_TASKSCHEDULER_HPP #include #include #include #if defined( KOKKOS_ENABLE_TASKDAG ) //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- namespace TestTaskScheduler { namespace { inline long eval_fib( long n ) { constexpr long mask = 0x03 ; long fib[4] = { 0 , 1 , 1 , 2 }; for ( long i = 2 ; i <= n ; ++i ) { fib[ i & mask ] = fib[ ( i - 1 ) & mask ] + fib[ ( i - 2 ) & mask ]; } return fib[ n & mask ]; } } template< typename Space > struct TestFib { typedef Kokkos::TaskScheduler policy_type ; typedef Kokkos::Future future_type ; typedef long value_type ; policy_type policy ; future_type fib_m1 ; future_type fib_m2 ; const value_type n ; KOKKOS_INLINE_FUNCTION TestFib( const policy_type & arg_policy , const value_type arg_n ) : policy(arg_policy) , fib_m1() , fib_m2() , n( arg_n ) {} KOKKOS_INLINE_FUNCTION void operator()( typename policy_type::member_type & , value_type & result ) { #if 0 printf( "\nTestFib(%ld) %d %d\n" , n , int( ! fib_m1.is_null() ) , int( ! fib_m2.is_null() ) ); #endif if ( n < 2 ) { result = n ; } else if ( ! fib_m2.is_null() && ! fib_m1.is_null() ) { result = fib_m1.get() + fib_m2.get(); } else { // Spawn new children and respawn myself to sum their results: // Spawn lower value at higher priority as it has a shorter // path to completion. fib_m2 = policy.task_spawn( TestFib(policy,n-2) , Kokkos::TaskSingle , Kokkos::TaskHighPriority ); fib_m1 = policy.task_spawn( TestFib(policy,n-1) , Kokkos::TaskSingle ); Kokkos::Future dep[] = { fib_m1 , fib_m2 }; Kokkos::Future fib_all = policy.when_all( 2 , dep ); if ( ! fib_m2.is_null() && ! fib_m1.is_null() && ! fib_all.is_null() ) { // High priority to retire this branch policy.respawn( this , Kokkos::TaskHighPriority , fib_all ); } else { #if 1 printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) task_accum(%ld)\n" , n , policy.allocation_capacity() , policy.allocated_task_count_max() , policy.allocated_task_count_accum() ); #endif Kokkos::abort("TestFib insufficient memory"); } } } static void run( int i , size_t MemoryCapacity = 16000 ) { typedef typename policy_type::memory_space memory_space ; enum { Log2_SuperBlockSize = 12 }; policy_type root_policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize ); future_type f = root_policy.host_spawn( TestFib(root_policy,i) , Kokkos::TaskSingle ); Kokkos::wait( root_policy ); ASSERT_EQ( eval_fib(i) , f.get() ); #if 0 fprintf( stdout , "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n" , i , int(root_policy.template spawn_allocation_size()) , int(root_policy.when_all_allocation_size(2)) , root_policy.allocation_capacity() , root_policy.allocated_task_count_max() , root_policy.allocated_task_count_accum() ); fflush( stdout ); #endif } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- namespace TestTaskScheduler { template< class Space > struct TestTaskDependence { typedef Kokkos::TaskScheduler policy_type ; typedef Kokkos::Future future_type ; typedef Kokkos::View accum_type ; typedef void value_type ; policy_type m_policy ; accum_type m_accum ; long m_count ; KOKKOS_INLINE_FUNCTION TestTaskDependence( long n , const policy_type & arg_policy , const accum_type & arg_accum ) : m_policy( arg_policy ) , m_accum( arg_accum ) , m_count( n ) {} KOKKOS_INLINE_FUNCTION void operator()( typename policy_type::member_type & ) { enum { CHUNK = 8 }; const int n = CHUNK < m_count ? CHUNK : m_count ; if ( 1 < m_count ) { future_type f[ CHUNK ] ; const int inc = ( m_count + n - 1 ) / n ; for ( int i = 0 ; i < n ; ++i ) { long begin = i * inc ; long count = begin + inc < m_count ? inc : m_count - begin ; f[i] = m_policy.task_spawn( TestTaskDependence(count,m_policy,m_accum) , Kokkos::TaskSingle ); } m_count = 0 ; m_policy.respawn( this , m_policy.when_all( n , f ) ); } else if ( 1 == m_count ) { Kokkos::atomic_increment( & m_accum() ); } } static void run( int n ) { typedef typename policy_type::memory_space memory_space ; // enum { MemoryCapacity = 4000 }; // Triggers infinite loop in memory pool enum { MemoryCapacity = 16000 }; enum { Log2_SuperBlockSize = 12 }; policy_type policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize ); accum_type accum("accum"); typename accum_type::HostMirror host_accum = Kokkos::create_mirror_view( accum ); policy.host_spawn( TestTaskDependence(n,policy,accum) , Kokkos::TaskSingle ); Kokkos::wait( policy ); Kokkos::deep_copy( host_accum , accum ); ASSERT_EQ( host_accum() , n ); } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- namespace TestTaskScheduler { template< class ExecSpace > struct TestTaskTeam { //enum { SPAN = 8 }; enum { SPAN = 33 }; //enum { SPAN = 1 }; typedef void value_type ; typedef Kokkos::TaskScheduler policy_type ; typedef Kokkos::Future future_type ; typedef Kokkos::View view_type ; policy_type policy ; future_type future ; view_type parfor_result ; view_type parreduce_check ; view_type parscan_result ; view_type parscan_check ; const long nvalue ; KOKKOS_INLINE_FUNCTION TestTaskTeam( const policy_type & arg_policy , const view_type & arg_parfor_result , const view_type & arg_parreduce_check , const view_type & arg_parscan_result , const view_type & arg_parscan_check , const long arg_nvalue ) : policy(arg_policy) , future() , parfor_result( arg_parfor_result ) , parreduce_check( arg_parreduce_check ) , parscan_result( arg_parscan_result ) , parscan_check( arg_parscan_check ) , nvalue( arg_nvalue ) {} KOKKOS_INLINE_FUNCTION void operator()( typename policy_type::member_type & member ) { const long end = nvalue + 1 ; const long begin = 0 < end - SPAN ? end - SPAN : 0 ; if ( 0 < begin && future.is_null() ) { if ( member.team_rank() == 0 ) { future = policy.task_spawn ( TestTaskTeam( policy , parfor_result , parreduce_check, parscan_result, parscan_check, begin - 1 ) , Kokkos::TaskTeam ); assert( ! future.is_null() ); policy.respawn( this , future ); } return ; } Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { parfor_result[i] = i ; } ); // test parallel_reduce without join long tot = 0; long expected = (begin+end-1)*(end-begin)*0.5; Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i, long &res) { res += parfor_result[i]; } , tot); Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { parreduce_check[i] = expected-tot ; } ); // test parallel_reduce with join tot = 0; Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i, long &res) { res += parfor_result[i]; } , [&]( long& val1, const long& val2) { val1 += val2; } , tot); Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { parreduce_check[i] += expected-tot ; } ); // test parallel_scan // Exclusive scan Kokkos::parallel_scan( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i, long &val , const bool final ) { if ( final ) { parscan_result[i] = val; } val += i; } ); if ( member.team_rank() == 0 ) { for ( long i = begin ; i < end ; ++i ) { parscan_check[i] = (i*(i-1)-begin*(begin-1))*0.5-parscan_result[i]; } } // Inclusive scan Kokkos::parallel_scan( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i, long &val , const bool final ) { val += i; if ( final ) { parscan_result[i] = val; } } ); if ( member.team_rank() == 0 ) { for ( long i = begin ; i < end ; ++i ) { parscan_check[i] += (i*(i+1)-begin*(begin-1))*0.5-parscan_result[i]; } } // ThreadVectorRange check /* long result = 0; expected = (begin+end-1)*(end-begin)*0.5; Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member , 0 , 1 ) , [&] ( const int i , long & outerUpdate ) { long sum_j = 0.0; Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member , end - begin ) , [&] ( const int j , long &innerUpdate ) { innerUpdate += begin+j; } , sum_j ); outerUpdate += sum_j ; } , result ); Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { parreduce_check[i] += result-expected ; } ); */ } static void run( long n ) { // const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop // const unsigned memory_capacity = 100000 ; // fails with SPAN=1 for serial and OMP const unsigned memory_capacity = 400000 ; policy_type root_policy( typename policy_type::memory_space() , memory_capacity ); view_type root_parfor_result("parfor_result",n+1); view_type root_parreduce_check("parreduce_check",n+1); view_type root_parscan_result("parscan_result",n+1); view_type root_parscan_check("parscan_check",n+1); typename view_type::HostMirror host_parfor_result = Kokkos::create_mirror_view( root_parfor_result ); typename view_type::HostMirror host_parreduce_check = Kokkos::create_mirror_view( root_parreduce_check ); typename view_type::HostMirror host_parscan_result = Kokkos::create_mirror_view( root_parscan_result ); typename view_type::HostMirror host_parscan_check = Kokkos::create_mirror_view( root_parscan_check ); future_type f = root_policy.host_spawn( TestTaskTeam( root_policy , root_parfor_result , root_parreduce_check , root_parscan_result, root_parscan_check, n ) , Kokkos::TaskTeam ); Kokkos::wait( root_policy ); Kokkos::deep_copy( host_parfor_result , root_parfor_result ); Kokkos::deep_copy( host_parreduce_check , root_parreduce_check ); Kokkos::deep_copy( host_parscan_result , root_parscan_result ); Kokkos::deep_copy( host_parscan_check , root_parscan_check ); for ( long i = 0 ; i <= n ; ++i ) { const long answer = i ; if ( host_parfor_result(i) != answer ) { std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = " << host_parfor_result(i) << " != " << answer << std::endl ; } if ( host_parreduce_check(i) != 0 ) { std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = " << host_parreduce_check(i) << " != 0" << std::endl ; } if ( host_parscan_check(i) != 0 ) { std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = " << host_parscan_check(i) << " != 0" << std::endl ; } } } }; template< class ExecSpace > struct TestTaskTeamValue { enum { SPAN = 8 }; typedef long value_type ; typedef Kokkos::TaskScheduler policy_type ; typedef Kokkos::Future future_type ; typedef Kokkos::View view_type ; policy_type policy ; future_type future ; view_type result ; const long nvalue ; KOKKOS_INLINE_FUNCTION TestTaskTeamValue( const policy_type & arg_policy , const view_type & arg_result , const long arg_nvalue ) : policy(arg_policy) , future() , result( arg_result ) , nvalue( arg_nvalue ) {} KOKKOS_INLINE_FUNCTION void operator()( typename policy_type::member_type const & member , value_type & final ) { const long end = nvalue + 1 ; const long begin = 0 < end - SPAN ? end - SPAN : 0 ; if ( 0 < begin && future.is_null() ) { if ( member.team_rank() == 0 ) { future = policy.task_spawn ( TestTaskTeamValue( policy , result , begin - 1 ) , Kokkos::TaskTeam ); assert( ! future.is_null() ); policy.respawn( this , future ); } return ; } Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end) , [&]( int i ) { result[i] = i + 1 ; } ); if ( member.team_rank() == 0 ) { final = result[nvalue] ; } Kokkos::memory_fence(); } static void run( long n ) { // const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop const unsigned memory_capacity = 100000 ; policy_type root_policy( typename policy_type::memory_space() , memory_capacity ); view_type root_result("result",n+1); typename view_type::HostMirror host_result = Kokkos::create_mirror_view( root_result ); future_type fv = root_policy.host_spawn ( TestTaskTeamValue( root_policy, root_result, n ) , Kokkos::TaskTeam ); Kokkos::wait( root_policy ); Kokkos::deep_copy( host_result , root_result ); if ( fv.get() != n + 1 ) { std::cerr << "TestTaskTeamValue ERROR future = " << fv.get() << " != " << n + 1 << std::endl ; } for ( long i = 0 ; i <= n ; ++i ) { const long answer = i + 1 ; if ( host_result(i) != answer ) { std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = " << host_result(i) << " != " << answer << std::endl ; } } } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- #endif /* #if defined( KOKKOS_ENABLE_TASKDAG ) */ #endif /* #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP */