/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "pair_dpd_tstat_gpu.h" #include "atom.h" #include "domain.h" #include "error.h" #include "force.h" #include "gpu_extra.h" #include "neigh_list.h" #include "neighbor.h" #include "suffix.h" #include "update.h" #include using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int dpd_tstat_gpu_init(const int ntypes, double **cutsq, double **host_a0, double **host_gamma, double **host_sigma, double **host_cut, double *special_lj, const int inum, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void dpd_tstat_gpu_clear(); int **dpd_tstat_gpu_compute_n(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success, double **host_v, const double dtinvsqrt, const int seed, const int timestep, double *boxlo, double *prd); void dpd_tstat_gpu_compute(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success, tagint *tag, double **host_v, const double dtinvsqrt, const int seed, const int timestep, const int nlocal, double *boxlo, double *prd); void dpd_tstat_gpu_update_coeff(int ntypes, double **host_a0, double **host_gamma, double **host_sigma, double **host_cut); double dpd_tstat_gpu_bytes(); #define EPSILON 1.0e-10 //#define _USE_UNIFORM_SARU_LCG //#define _USE_UNIFORM_SARU_TEA8 //#define _USE_GAUSSIAN_SARU_LCG #if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && \ !defined(_USE_GAUSSIAN_SARU_LCG) #define _USE_UNIFORM_SARU_LCG #endif // References: // 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128. // 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201. // PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19 #define LCGA 0x4beb5d59 // Full period 32 bit LCG #define LCGC 0x2600e1f7 #define oWeylPeriod 0xda879add // Prime period 3666320093 #define oWeylOffset 0x8009d14b #define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */ // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] // using the inherent LCG, then multiply u with sqrt(3) to "match" // with a normal random distribution. // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) // Curly brackets to make variables local to the scope. #ifdef _USE_UNIFORM_SARU_LCG #define numtyp double #define SQRT3 (numtyp) 1.7320508075688772935274463 #define saru(seed1, seed2, seed, timestep, randnum) \ { \ unsigned int seed3 = seed + timestep; \ seed3 ^= (seed1 << 7) ^ (seed2 >> 6); \ seed2 += (seed1 >> 4) ^ (seed3 >> 15); \ seed1 ^= (seed2 << 9) + (seed3 << 8); \ seed3 ^= 0xA5366B4D * ((seed2 >> 11) ^ (seed1 << 1)); \ seed2 += 0x72BE1579 * ((seed1 << 4) ^ (seed3 >> 16)); \ seed1 ^= 0x3F38A6ED * ((seed3 >> 5) ^ (((signed int) seed2) >> 22)); \ seed2 += seed1 * seed3; \ seed1 += seed3 ^ (seed2 >> 2); \ seed2 ^= ((signed int) seed2) >> 17; \ unsigned int state = 0x79dedea3 * (seed1 ^ (((signed int) seed1) >> 14)); \ unsigned int wstate = (state + seed2) ^ (((signed int) state) >> 8); \ state = state + (wstate * (wstate ^ 0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate >> 1); \ state = LCGA * state + LCGC; \ wstate = wstate + oWeylOffset + ((((signed int) wstate) >> 31) & oWeylPeriod); \ unsigned int v = (state ^ (state >> 26)) + wstate; \ unsigned int s = (signed int) ((v ^ (v >> 20)) * 0x6957f5a7); \ randnum = SQRT3 * (s * TWO_N32 * (numtyp) 2.0 - (numtyp) 1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8 // then multiply u with sqrt(3) to "match" with a normal random distribution // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) #ifdef _USE_UNIFORM_SARU_TEA8 #define numtyp double #define SQRT3 (numtyp) 1.7320508075688772935274463 #define k0 0xA341316C #define k1 0xC8013EA4 #define k2 0xAD90777D #define k3 0x7E95761E #define delta 0x9e3779b9 #define rounds 8 #define saru(seed1, seed2, seed, timestep, randnum) \ { \ unsigned int seed3 = seed + timestep; \ seed3 ^= (seed1 << 7) ^ (seed2 >> 6); \ seed2 += (seed1 >> 4) ^ (seed3 >> 15); \ seed1 ^= (seed2 << 9) + (seed3 << 8); \ seed3 ^= 0xA5366B4D * ((seed2 >> 11) ^ (seed1 << 1)); \ seed2 += 0x72BE1579 * ((seed1 << 4) ^ (seed3 >> 16)); \ seed1 ^= 0x3F38A6ED * ((seed3 >> 5) ^ (((signed int) seed2) >> 22)); \ seed2 += seed1 * seed3; \ seed1 += seed3 ^ (seed2 >> 2); \ seed2 ^= ((signed int) seed2) >> 17; \ unsigned int state = 0x79dedea3 * (seed1 ^ (((signed int) seed1) >> 14)); \ unsigned int wstate = (state + seed2) ^ (((signed int) state) >> 8); \ state = state + (wstate * (wstate ^ 0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate >> 1); \ unsigned int sum = 0; \ for (int i = 0; i < rounds; i++) { \ sum += delta; \ state += ((wstate << 4) + k0) ^ (wstate + sum) ^ ((wstate >> 5) + k1); \ wstate += ((state << 4) + k2) ^ (state + sum) ^ ((state >> 5) + k3); \ } \ unsigned int v = (state ^ (state >> 26)) + wstate; \ unsigned int s = (signed int) ((v ^ (v >> 20)) * 0x6957f5a7); \ randnum = SQRT3 * (s * TWO_N32 * (numtyp) 2.0 - (numtyp) 1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0], // and uses the polar method (Marsaglia's) to transform to a normal random value // This is used to compared with CPU DPD using RandMars::gaussian() #ifdef _USE_GAUSSIAN_SARU_LCG #define numtyp double #define saru(seed1, seed2, seed, timestep, randnum) \ { \ unsigned int seed3 = seed + timestep; \ seed3 ^= (seed1 << 7) ^ (seed2 >> 6); \ seed2 += (seed1 >> 4) ^ (seed3 >> 15); \ seed1 ^= (seed2 << 9) + (seed3 << 8); \ seed3 ^= 0xA5366B4D * ((seed2 >> 11) ^ (seed1 << 1)); \ seed2 += 0x72BE1579 * ((seed1 << 4) ^ (seed3 >> 16)); \ seed1 ^= 0x3F38A6ED * ((seed3 >> 5) ^ (((signed int) seed2) >> 22)); \ seed2 += seed1 * seed3; \ seed1 += seed3 ^ (seed2 >> 2); \ seed2 ^= ((signed int) seed2) >> 17; \ unsigned int state = 0x12345678; \ unsigned int wstate = 12345678; \ state = 0x79dedea3 * (seed1 ^ (((signed int) seed1) >> 14)); \ wstate = (state + seed2) ^ (((signed int) state) >> 8); \ state = state + (wstate * (wstate ^ 0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate >> 1); \ unsigned int v, s; \ numtyp r1, r2, rsq; \ while (1) { \ state = LCGA * state + LCGC; \ wstate = wstate + oWeylOffset + ((((signed int) wstate) >> 31) & oWeylPeriod); \ v = (state ^ (state >> 26)) + wstate; \ s = (signed int) ((v ^ (v >> 20)) * 0x6957f5a7); \ r1 = s * TWO_N32 * (numtyp) 2.0 - (numtyp) 1.0; \ state = LCGA * state + LCGC; \ wstate = wstate + oWeylOffset + ((((signed int) wstate) >> 31) & oWeylPeriod); \ v = (state ^ (state >> 26)) + wstate; \ s = (signed int) ((v ^ (v >> 20)) * 0x6957f5a7); \ r2 = s * TWO_N32 * (numtyp) 2.0 - (numtyp) 1.0; \ rsq = r1 * r1 + r2 * r2; \ if (rsq < (numtyp) 1.0) break; \ } \ numtyp fac = sqrt((numtyp) -2.0 * log(rsq) / rsq); \ randnum = r2 * fac; \ } #endif /* ---------------------------------------------------------------------- */ PairDPDTstatGPU::PairDPDTstatGPU(LAMMPS *lmp) : PairDPDTstat(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; suffix_flag |= Suffix::GPU; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairDPDTstatGPU::~PairDPDTstatGPU() { dpd_tstat_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairDPDTstatGPU::compute(int eflag, int vflag) { ev_init(eflag, vflag); // adjust sigma if target T is changing if (t_start != t_stop) { double delta = update->ntimestep - update->beginstep; if (delta != 0.0) delta /= update->endstep - update->beginstep; temperature = t_start + delta * (t_stop - t_start); double boltz = force->boltz; for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) sigma[i][j] = sigma[j][i] = sqrt(2.0 * boltz * temperature * gamma[i][j]); dpd_tstat_gpu_update_coeff(atom->ntypes + 1, a0, gamma, sigma, cut); } int nall = atom->nlocal + atom->nghost; int inum, host_start; double dtinvsqrt = 1.0 / sqrt(update->dt); bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { double sublo[3], subhi[3]; if (domain->triclinic == 0) { sublo[0] = domain->sublo[0]; sublo[1] = domain->sublo[1]; sublo[2] = domain->sublo[2]; subhi[0] = domain->subhi[0]; subhi[1] = domain->subhi[1]; subhi[2] = domain->subhi[2]; } else { domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi); } inum = atom->nlocal; firstneigh = dpd_tstat_gpu_compute_n( neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success, atom->v, dtinvsqrt, seed, update->ntimestep, domain->boxlo, domain->prd); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; dpd_tstat_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->tag, atom->v, dtinvsqrt, seed, update->ntimestep, atom->nlocal, domain->boxlo, domain->prd); } if (!success) error->one(FLERR, "Insufficient memory on accelerator"); if (host_start < inum) { cpu_time = platform::walltime(); cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh); cpu_time = platform::walltime() - cpu_time; } } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairDPDTstatGPU::init_style() { // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double mcut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { mcut = init_one(i, j); mcut *= mcut; if (mcut > maxcut) maxcut = mcut; cutsq[i][j] = cutsq[j][i] = mcut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int maxspecial = 0; if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial; int mnf = 5e-2 * neighbor->oneatom; int success = dpd_tstat_gpu_init(atom->ntypes + 1, cutsq, a0, gamma, sigma, cut, force->special_lj, atom->nlocal, atom->nlocal + atom->nghost, mnf, maxspecial, cell_size, gpu_mode, screen); GPU_EXTRA::check_flag(success, error, world); if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL); } /* ---------------------------------------------------------------------- */ double PairDPDTstatGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + dpd_tstat_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairDPDTstatGPU::cpu_compute(int start, int inum, int /* eflag */, int /* vflag */, int *ilist, int *numneigh, int **firstneigh) { int i, j, ii, jj, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, fpair; double vxtmp, vytmp, vztmp, delvx, delvy, delvz; double rsq, r, rinv, dot, wd, randnum, factor_dpd; int *jlist; tagint itag, jtag; double **x = atom->x; double **v = atom->v; double **f = atom->f; int *type = atom->type; tagint *tag = atom->tag; double *special_lj = force->special_lj; double dtinvsqrt = 1.0 / sqrt(update->dt); int timestep = (int) update->ntimestep; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; itag = tag[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_dpd = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; jtag = tag[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0 / r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx * delvx + dely * delvy + delz * delvz; wd = 1.0 - r / cut[itype][jtype]; unsigned int tag1 = itag, tag2 = jtag; if (tag1 > tag2) { tag1 = jtag; tag2 = itag; } randnum = 0.0; saru(tag1, tag2, seed, timestep, randnum); // conservative force = a0 * wd // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fpair = -gamma[itype][jtype] * wd * wd * dot * rinv; fpair += sigma[itype][jtype] * wd * randnum * dtinvsqrt; fpair *= factor_dpd * rinv; f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (evflag) ev_tally_full(i, 0.0, 0.0, fpair, delx, dely, delz); } } } }