/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Kurt Smith (U Pittsburgh) ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_dpd.h" #include "atom.h" #include "comm.h" #include "force.h" #include "update.h" #include "random_mars.h" #include "memory.h" #include "neighbor.h" #include "error.h" using namespace LAMMPS_NS; #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) #define EPSILON 1.0e-10 /* ---------------------------------------------------------------------- */ PairDPD::PairDPD(LAMMPS *lmp) : Pair(lmp) { random = NULL; } /* ---------------------------------------------------------------------- */ PairDPD::~PairDPD() { if (allocated) { memory->destroy_2d_int_array(setflag); memory->destroy_2d_double_array(cutsq); memory->destroy_2d_double_array(cut); memory->destroy_2d_double_array(a0); memory->destroy_2d_double_array(gamma); memory->destroy_2d_double_array(sigma); } if (random) delete random; } /* ---------------------------------------------------------------------- */ void PairDPD::compute(int eflag, int vflag) { int i,j,k,numneigh,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,vxtmp,vytmp,vztmp,delvx,delvy,delvz; double rsq,r,rinv,dot,wd,randnum,fforce,factor_dpd,phi; int *neighs; double **f; eng_vdwl = 0.0; if (vflag) for (i = 0; i < 6; i++) virial[i] = 0.0; if (vflag == 2) f = update->f_pair; else f = atom->f; double **x = atom->x; double **v = atom->v; int *type = atom->type; int nlocal = atom->nlocal; int nall = atom->nlocal + atom->nghost; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; double dtinvsqrt = 1.0/sqrt(update->dt); // loop over neighbors of my atoms for (i = 0; i < nlocal; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; neighs = neighbor->firstneigh[i]; numneigh = neighbor->numneigh[i]; for (k = 0; k < numneigh; k++) { j = neighs[k]; if (j < nall) factor_dpd = 1.0; else { factor_dpd = special_lj[j/nall]; j %= nall; } delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0/r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx*delvx + dely*delvy + delz*delvz; wd = 1.0 - r/cut[itype][jtype]; randnum = random->gaussian(); // conservative force = a0 * wd // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fforce = a0[itype][jtype]*wd; fforce -= gamma[itype][jtype]*wd*wd*dot*rinv; fforce += sigma[itype][jtype]*wd*randnum*dtinvsqrt; fforce *= factor_dpd*rinv; f[i][0] += delx*fforce; f[i][1] += dely*fforce; f[i][2] += delz*fforce; if (newton_pair || j < nlocal) { f[j][0] -= delx*fforce; f[j][1] -= dely*fforce; f[j][2] -= delz*fforce; } if (eflag) { phi = a0[itype][jtype] * r * (1.0 - 0.5*r/cut[itype][jtype]); if (newton_pair || j < nlocal) eng_vdwl += factor_dpd*phi; else eng_vdwl += 0.5*factor_dpd*phi; } if (vflag == 1) { if (newton_pair == 0 && j >= nlocal) fforce *= 0.5; virial[0] += delx*delx*fforce; virial[1] += dely*dely*fforce; virial[2] += delz*delz*fforce; virial[3] += delx*dely*fforce; virial[4] += delx*delz*fforce; virial[5] += dely*delz*fforce; } } } } if (vflag == 2) virial_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairDPD::allocate() { allocated = 1; int n = atom->ntypes; setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq"); cut = memory->create_2d_double_array(n+1,n+1,"pair:cut"); a0 = memory->create_2d_double_array(n+1,n+1,"pair:a0"); gamma = memory->create_2d_double_array(n+1,n+1,"pair:gamma"); sigma = memory->create_2d_double_array(n+1,n+1,"pair:sigma"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairDPD::settings(int narg, char **arg) { if (narg != 3) error->all("Illegal pair_style command"); temperature = atof(arg[0]); cut_global = atof(arg[1]); seed = atoi(arg[2]); // initialize Marsaglia RNG with processor-unique seed if (seed <= 0 || seed > 900000000) error->all("Illegal fix pair_style command"); if (random) delete random; random = new RanMars(lmp,seed + comm->me); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i+1; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairDPD::coeff(int narg, char **arg) { if (narg < 4 || narg > 5) error->all("Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); double a0_one = atof(arg[2]); double gamma_one = atof(arg[3]); double cut_one = cut_global; if (narg == 5) cut_one = atof(arg[4]); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { a0[i][j] = a0_one; gamma[i][j] = gamma_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all("Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairDPD::init_one(int i, int j) { if (setflag[i][j] == 0) error->all("All pair coeffs are not set"); sigma[i][j] = sqrt(2.0*temperature*gamma[i][j]); cut[j][i] = cut[i][j]; a0[j][i] = a0[i][j]; gamma[j][i] = gamma[i][j]; sigma[j][i] = sigma[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairDPD::init_style() { // check that atom style is dpd or hybrid with dpd // else compute() will not have ghost atom velocities if (atom->style_match("dpd") == 0) error->all("Pair style dpd requires atom style dpd"); // if newton off, forces between atoms ij will be double computed // using different random numbers if (force->newton_pair == 0 && comm->me == 0) error->warning( "DPD potential needs newton pair on for momentum conservation"); } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPD::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&a0[i][j],sizeof(double),1,fp); fwrite(&gamma[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPD::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { fread(&a0[i][j],sizeof(double),1,fp); fread(&gamma[i][j],sizeof(double),1,fp); fread(&cut[i][j],sizeof(double),1,fp); } MPI_Bcast(&a0[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&gamma[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPD::write_restart_settings(FILE *fp) { fwrite(&temperature,sizeof(double),1,fp); fwrite(&cut_global,sizeof(double),1,fp); fwrite(&seed,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPD::read_restart_settings(FILE *fp) { if (comm->me == 0) { fread(&temperature,sizeof(double),1,fp); fread(&cut_global,sizeof(double),1,fp); fread(&seed,sizeof(int),1,fp); fread(&mix_flag,sizeof(int),1,fp); } MPI_Bcast(&temperature,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&seed,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); // initialize Marsaglia RNG with processor-unique seed // same seed that pair_style command initially specified if (random) delete random; random = new RanMars(lmp,seed + comm->me); } /* ---------------------------------------------------------------------- */ void PairDPD::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_dpd, int eflag, One &one) { double r,rinv,wd,phi; r = sqrt(rsq); if (r < EPSILON) { one.fforce = 0.0; if (eflag) one.eng_vdwl = one.eng_coul = 0.0; return; } rinv = 1.0/r; wd = 1.0 - r/cut[itype][jtype]; one.fforce = a0[itype][jtype]*wd * factor_dpd*rinv; if (eflag) { phi = a0[itype][jtype] * r * (1.0 - 0.5*r/cut[itype][jtype]); one.eng_vdwl = factor_dpd*phi; one.eng_coul = 0.0; } }