/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include #include #include #include "dihedral_table_omp.h" #include "atom.h" #include "comm.h" #include "neighbor.h" #include "domain.h" #include "force.h" #include "update.h" #include "error.h" #include "math_const.h" #include "math_extra.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace MathExtra; #define TOLERANCE 0.05 #define SMALL 0.001 // -------------------------------------------- // ------- Calculate the dihedral angle ------- // -------------------------------------------- static const int g_dim=3; static double Phi(double const *x1, //array holding x,y,z coords atom 1 double const *x2, // : : : : 2 double const *x3, // : : : : 3 double const *x4, // : : : : 4 Domain *domain, //<-periodic boundary information // The following arrays are of doubles with g_dim elements. // (g_dim is a constant known at compile time, usually 3). // Their contents is calculated by this function. // Space for these vectors must be allocated in advance. // (This is not hidden internally because these vectors // may be needed outside the function, later on.) double *vb12, // will store x2-x1 double *vb23, // will store x3-x2 double *vb34, // will store x4-x3 double *n123, // will store normal to plane x1,x2,x3 double *n234) // will store normal to plane x2,x3,x4 { for (int d=0; d < g_dim; ++d) { vb12[d] = x2[d] - x1[d]; // 1st bond vb23[d] = x3[d] - x2[d]; // 2nd bond vb34[d] = x4[d] - x3[d]; // 3rd bond } //Consider periodic boundary conditions: domain->minimum_image(vb12[0],vb12[1],vb12[2]); domain->minimum_image(vb23[0],vb23[1],vb23[2]); domain->minimum_image(vb34[0],vb34[1],vb34[2]); //--- Compute the normal to the planes formed by atoms 1,2,3 and 2,3,4 --- cross3(vb23, vb12, n123); // <- n123=vb23 x vb12 cross3(vb23, vb34, n234); // <- n234=vb23 x vb34 norm3(n123); norm3(n234); double cos_phi = -dot3(n123, n234); if (cos_phi > 1.0) cos_phi = 1.0; else if (cos_phi < -1.0) cos_phi = -1.0; double phi = acos(cos_phi); if (dot3(n123, vb34) > 0.0) { phi = -phi; //(Note: Negative dihedral angles are possible only in 3-D.) phi += MY_2PI; //<- This insure phi is always in the range 0 to 2*PI } return phi; } // DihedralTable::Phi() /* ---------------------------------------------------------------------- */ DihedralTableOMP::DihedralTableOMP(class LAMMPS *lmp) : DihedralTable(lmp), ThrOMP(lmp,THR_DIHEDRAL) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void DihedralTableOMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->ndihedrallist; #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); if (inum > 0) { if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void DihedralTableOMP::eval(int nfrom, int nto, ThrData * const thr) { int i1,i2,i3,i4,n,type; double edihedral,f1[3],f2[3],f3[3],f4[3]; const double * const * const x = atom->x; double * const * const f = thr->get_f(); const int * const * const dihedrallist = neighbor->dihedrallist; const int nlocal = atom->nlocal; // The dihedral angle "phi" is the angle between n123 and n234 // the planes defined by atoms i1,i2,i3, and i2,i3,i4. // // Definitions of vectors: vb12, vb23, vb34, perp12on23 // proj12on23, perp43on32, proj43on32 // // Note: The positions of the 4 atoms are labeled x[i1], x[i2], x[i3], x[i4] // (which are also vectors) // // proj12on23 proj34on23 // ---------> -----------> // . // . // . // x[i2] . x[i3] // . __@----------vb23-------->@ . . . . . // /|\ /| \ | // | / \ | // | / \ | // perp12vs23 / \ | // | / \ perp34vs23 // | vb12 \ | // | / vb34 | // | / \ | // | / \ | // | / \ | // @ \ | // _\| \|/ // x[i1] @ // // x[i4] // double vb12[g_dim]; // displacement vector from atom i1 towards atom i2 // vb12[d] = x[i2][d] - x[i1][d] (for d=0,1,2) double vb23[g_dim]; // displacement vector from atom i2 towards atom i3 // vb23[d] = x[i3][d] - x[i2][d] (for d=0,1,2) double vb34[g_dim]; // displacement vector from atom i3 towards atom i4 // vb34[d] = x[i4][d] - x[i3][d] (for d=0,1,2) // n123 & n234: These two unit vectors are normal to the planes // defined by atoms 1,2,3 and 2,3,4. double n123[g_dim]; //n123=vb23 x vb12 / |vb23 x vb12| ("x" is cross product) double n234[g_dim]; //n234=vb23 x vb34 / |vb23 x vb34| ("x" is cross product) double proj12on23[g_dim]; // proj12on23[d] = (vb23[d]/|vb23|) * DotProduct(vb12,vb23)/|vb12|*|vb23| double proj34on23[g_dim]; // proj34on23[d] = (vb34[d]/|vb23|) * DotProduct(vb34,vb23)/|vb34|*|vb23| double perp12on23[g_dim]; // perp12on23[d] = v12[d] - proj12on23[d] double perp34on23[g_dim]; // perp34on23[d] = v34[d] - proj34on23[d] edihedral = 0.0; for (n = nfrom; n < nto; n++) { i1 = dihedrallist[n][0]; i2 = dihedrallist[n][1]; i3 = dihedrallist[n][2]; i4 = dihedrallist[n][3]; type = dihedrallist[n][4]; // ------ Step 1: Compute the dihedral angle "phi" ------ // // Phi() calculates the dihedral angle. // This function also calculates the vectors: // vb12, vb23, vb34, n123, and n234, which we will need later. double phi = Phi(x[i1], x[i2], x[i3], x[i4], domain, vb12, vb23, vb34, n123, n234); // ------ Step 2: Compute the gradient of phi with atomic position: ------ // // Gradient variables: // // dphi_dx1, dphi_dx2, dphi_dx3, dphi_dx4 are the gradients of phi with // respect to the atomic positions of atoms i1, i2, i3, i4, respectively. // As an example, consider dphi_dx1. The d'th element is: double dphi_dx1[g_dim]; // d phi double dphi_dx2[g_dim]; // dphi_dx1[d] = ---------- (partial derivatives) double dphi_dx3[g_dim]; // d x[i1][d] double dphi_dx4[g_dim]; //where d=0,1,2 corresponds to x,y,z (if g_dim==3) double dot123 = dot3(vb12, vb23); double dot234 = dot3(vb23, vb34); double L23sqr = dot3(vb23, vb23); double L23 = sqrt(L23sqr); // (central bond length) double inv_L23sqr = 0.0; double inv_L23 = 0.0; if (L23sqr != 0.0) { inv_L23sqr = 1.0 / L23sqr; inv_L23 = 1.0 / L23; } double neg_inv_L23 = -inv_L23; double dot123_over_L23sqr = dot123 * inv_L23sqr; double dot234_over_L23sqr = dot234 * inv_L23sqr; for (int d=0; d < g_dim; ++d) { // See figure above for a visual definitions of these vectors: proj12on23[d] = vb23[d] * dot123_over_L23sqr; proj34on23[d] = vb23[d] * dot234_over_L23sqr; perp12on23[d] = vb12[d] - proj12on23[d]; perp34on23[d] = vb34[d] - proj34on23[d]; } // --- Compute the gradient vectors dphi/dx1 and dphi/dx4: --- // These two gradients point in the direction of n123 and n234, // and are scaled by the distances of atoms 1 and 4 from the central axis. // Distance of atom 1 to central axis: double perp12on23_len = sqrt(dot3(perp12on23, perp12on23)); // Distance of atom 4 to central axis: double perp34on23_len = sqrt(dot3(perp34on23, perp34on23)); double inv_perp12on23 = 0.0; if (perp12on23_len != 0.0) inv_perp12on23 = 1.0 / perp12on23_len; double inv_perp34on23 = 0.0; if (perp34on23_len != 0.0) inv_perp34on23 = 1.0 / perp34on23_len; for (int d=0; d < g_dim; ++d) { dphi_dx1[d] = n123[d] * inv_perp12on23; dphi_dx4[d] = n234[d] * inv_perp34on23; } // --- Compute the gradient vectors dphi/dx2 and dphi/dx3: --- // // This is more tricky because atoms 2 and 3 are shared by both planes // 123 and 234 (the angle between which defines "phi"). Moving either // one of these atoms effects both the 123 and 234 planes // Both the 123 and 234 planes intersect with the plane perpendicular to the // central bond axis (vb23). The two lines where these intersections occur // will shift when you move either atom 2 or atom 3. The angle between // these lines is the dihedral angle, phi. We can define four quantities: // dphi123_dx2 is the change in "phi" due to the movement of the 123 plane // ...as a result of moving atom 2. // dphi234_dx2 is the change in "phi" due to the movement of the 234 plane // ...as a result of moving atom 2. // dphi123_dx3 is the change in "phi" due to the movement of the 123 plane // ...as a result of moving atom 3. // dphi234_dx3 is the change in "phi" due to the movement of the 234 plane // ...as a result of moving atom 3. double proj12on23_len = dot123 * inv_L23; double proj34on23_len = dot234 * inv_L23; // Interpretation: //The magnitude of "proj12on23_len" is the length of the proj12on23 vector. //The sign is positive if it points in the same direction as the central //bond (vb23). Otherwise it is negative. The same goes for "proj34on23". //(In the example figure in the comment above, both variables are positive.) // The forumula used in the 8 lines below explained here: // "supporting_information/doc/gradient_formula_explanation/" double dphi123_dx2_coef = neg_inv_L23 * (L23 + proj12on23_len); double dphi234_dx2_coef = inv_L23 * proj34on23_len; double dphi234_dx3_coef = neg_inv_L23 * (L23 + proj34on23_len); double dphi123_dx3_coef = inv_L23 * proj12on23_len; for (int d=0; d < g_dim; ++d) { // Recall that the n123 and n234 plane normal vectors are proportional to // the dphi/dx1 and dphi/dx2 gradients vectors // It turns out we can save slightly more CPU cycles by expressing // dphi/dx2 and dphi/dx3 as linear combinations of dphi/dx1 and dphi/dx2 // which we computed already (instead of n123 & n234). dphi_dx2[d] = dphi123_dx2_coef*dphi_dx1[d] + dphi234_dx2_coef*dphi_dx4[d]; dphi_dx3[d] = dphi123_dx3_coef*dphi_dx1[d] + dphi234_dx3_coef*dphi_dx4[d]; } // ----- Step 3: Calculate the energy and force in the phi direction ----- // tabulated force & energy double u, m_du_dphi; //u = energy. m_du_dphi = "minus" du/dphi uf_lookup(type, phi, u, m_du_dphi); if (EFLAG) edihedral = u; // ----- Step 4: Calculate the force direction in real space ----- // chain rule: // d U d U d phi // -f = ----- = ----- * ----- // d x d phi d x for(int d=0; d < g_dim; ++d) { f1[d] = m_du_dphi * dphi_dx1[d]; f2[d] = m_du_dphi * dphi_dx2[d]; f3[d] = m_du_dphi * dphi_dx3[d]; f4[d] = m_du_dphi * dphi_dx4[d]; } // apply force to each of 4 atoms if (NEWTON_BOND || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (NEWTON_BOND || i2 < nlocal) { f[i2][0] += f2[0]; f[i2][1] += f2[1]; f[i2][2] += f2[2]; } if (NEWTON_BOND || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (NEWTON_BOND || i4 < nlocal) { f[i4][0] += f4[0]; f[i4][1] += f4[1]; f[i4][2] += f4[2]; } if (EVFLAG) ev_tally_thr(this,i1,i2,i3,i4,nlocal,NEWTON_BOND,edihedral,f1,f3,f4, vb12[0],vb12[1],vb12[2],vb23[0],vb23[1],vb23[2],vb34[0], vb34[1],vb34[2],thr); } }