/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "math.h" #include "pair_brownian_omp.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "force.h" #include "input.h" #include "neighbor.h" #include "neigh_list.h" #include "update.h" #include "variable.h" #include "random_mars.h" #include "math_const.h" #include "math_special.h" #include "fix_wall.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace MathSpecial; #define EPSILON 1.0e-10 // same as fix_wall.cpp enum{EDGE,CONSTANT,VARIABLE}; /* ---------------------------------------------------------------------- */ PairBrownianOMP::PairBrownianOMP(LAMMPS *lmp) : PairBrownian(lmp), ThrOMP(lmp, THR_PAIR) { suffix_flag |= Suffix::OMP; respa_enable = 0; random_thr = NULL; } /* ---------------------------------------------------------------------- */ PairBrownianOMP::~PairBrownianOMP() { if (random_thr) { for (int i=1; i < comm->nthreads; ++i) delete random_thr[i]; delete[] random_thr; random_thr = NULL; } } /* ---------------------------------------------------------------------- */ void PairBrownianOMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = vflag_fdotr = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = list->inum; // This section of code adjusts R0/RT0/RS0 if necessary due to changes // in the volume fraction as a result of fix deform or moving walls double dims[3], wallcoord; if (flagVF) // Flag for volume fraction corrections if (flagdeform || flagwall == 2){ // Possible changes in volume fraction if (flagdeform && !flagwall) for (int j = 0; j < 3; j++) dims[j] = domain->prd[j]; else if (flagwall == 2 || (flagdeform && flagwall == 1)){ double wallhi[3], walllo[3]; for (int j = 0; j < 3; j++){ wallhi[j] = domain->prd[j]; walllo[j] = 0; } for (int m = 0; m < wallfix->nwall; m++){ int dim = wallfix->wallwhich[m] / 2; int side = wallfix->wallwhich[m] % 2; if (wallfix->xstyle[m] == VARIABLE){ wallcoord = input->variable->compute_equal(wallfix->xindex[m]); } else wallcoord = wallfix->coord0[m]; if (side == 0) walllo[dim] = wallcoord; else wallhi[dim] = wallcoord; } for (int j = 0; j < 3; j++) dims[j] = wallhi[j] - walllo[j]; } double vol_T = dims[0]*dims[1]*dims[2]; double vol_f = vol_P/vol_T; if (flaglog == 0) { R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f); RT0 = 8*MY_PI*mu*cube(rad); //RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f); } else { R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f); RT0 = 8*MY_PI*mu*cube(rad)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f); //RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f); } } if (!random_thr) random_thr = new RanMars*[nthreads]; // to ensure full compatibility with the serial Brownian style // we use is random number generator instance for thread 0 random_thr[0] = random; #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); // generate a random number generator instance for // all threads != 0. make sure we use unique seeds. if (random_thr && tid > 0) random_thr[tid] = new RanMars(Pair::lmp, seed + comm->me + comm->nprocs*tid); if (flaglog) { if (evflag) { if (force->newton_pair) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_pair) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (evflag) { if (force->newton_pair) eval<0,1,1>(ifrom, ito, thr); else eval<0,1,0>(ifrom, ito, thr); } else { if (force->newton_pair) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void PairBrownianOMP::eval(int iifrom, int iito, ThrData * const thr) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz; double rsq,r,h_sep,radi; int *ilist,*jlist,*numneigh,**firstneigh; const double * const * const x = atom->x; double * const * const f = thr->get_f(); double * const * const torque = thr->get_torque(); const double * const radius = atom->radius; const int * const type = atom->type; const int nlocal = atom->nlocal; RanMars &rng = *random_thr[thr->get_tid()]; double vxmu2f = force->vxmu2f; double randr; double prethermostat; double xl[3],a_sq,a_sh,a_pu,Fbmag; double p1[3],p2[3],p3[3]; int overlaps = 0; // scale factor for Brownian moments prethermostat = sqrt(24.0*force->boltz*t_target/update->dt); prethermostat *= sqrt(force->vxmu2f/force->ftm2v/force->mvv2e); ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = iifrom; ii < iito; ++ii) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; radi = radius[i]; jlist = firstneigh[i]; jnum = numneigh[i]; // FLD contribution to force and torque due to isotropic terms if (flagfld) { f[i][0] += prethermostat*sqrt(R0)*(rng.uniform()-0.5); f[i][1] += prethermostat*sqrt(R0)*(rng.uniform()-0.5); f[i][2] += prethermostat*sqrt(R0)*(rng.uniform()-0.5); if (FLAGLOG) { torque[i][0] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5); torque[i][1] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5); torque[i][2] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5); } } if (!flagHI) continue; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); // scalar resistances a_sq and a_sh h_sep = r - 2.0*radi; // check for overlaps if (h_sep < 0.0) overlaps++; // if less than minimum gap, use minimum gap instead if (r < cut_inner[itype][jtype]) h_sep = cut_inner[itype][jtype] - 2.0*radi; // scale h_sep by radi h_sep = h_sep/radi; // scalar resistances if (FLAGLOG) { a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep)); a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep)); a_pu = 8.0*MY_PI*mu*cube(radi)*(3.0/160.0*log(1.0/h_sep)); } else a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep); // generate the Pairwise Brownian Force: a_sq Fbmag = prethermostat*sqrt(a_sq); // generate a random number randr = rng.uniform()-0.5; // contribution due to Brownian motion fx = Fbmag*randr*delx/r; fy = Fbmag*randr*dely/r; fz = Fbmag*randr*delz/r; // add terms due to a_sh if (FLAGLOG) { // generate two orthogonal vectors to the line of centers p1[0] = delx/r; p1[1] = dely/r; p1[2] = delz/r; set_3_orthogonal_vectors(p1,p2,p3); // magnitude Fbmag = prethermostat*sqrt(a_sh); // force in each of the two directions randr = rng.uniform()-0.5; fx += Fbmag*randr*p2[0]; fy += Fbmag*randr*p2[1]; fz += Fbmag*randr*p2[2]; randr = rng.uniform()-0.5; fx += Fbmag*randr*p3[0]; fy += Fbmag*randr*p3[1]; fz += Fbmag*randr*p3[2]; } // scale forces to appropriate units fx = vxmu2f*fx; fy = vxmu2f*fy; fz = vxmu2f*fz; // sum to total force f[i][0] -= fx; f[i][1] -= fy; f[i][2] -= fz; if (NEWTON_PAIR || j < nlocal) { //randr = rng.uniform()-0.5; //fx = Fbmag*randr*delx/r; //fy = Fbmag*randr*dely/r; //fz = Fbmag*randr*delz/r; f[j][0] += fx; f[j][1] += fy; f[j][2] += fz; } // torque due to the Brownian Force if (FLAGLOG) { // location of the point of closest approach on I from its center xl[0] = -delx/r*radi; xl[1] = -dely/r*radi; xl[2] = -delz/r*radi; // torque = xl_cross_F tx = xl[1]*fz - xl[2]*fy; ty = xl[2]*fx - xl[0]*fz; tz = xl[0]*fy - xl[1]*fx; // torque is same on both particles torque[i][0] -= tx; torque[i][1] -= ty; torque[i][2] -= tz; if (NEWTON_PAIR || j < nlocal) { torque[j][0] -= tx; torque[j][1] -= ty; torque[j][2] -= tz; } // torque due to a_pu Fbmag = prethermostat*sqrt(a_pu); // force in each direction randr = rng.uniform()-0.5; tx = Fbmag*randr*p2[0]; ty = Fbmag*randr*p2[1]; tz = Fbmag*randr*p2[2]; randr = rng.uniform()-0.5; tx += Fbmag*randr*p3[0]; ty += Fbmag*randr*p3[1]; tz += Fbmag*randr*p3[2]; // torque has opposite sign on two particles torque[i][0] -= tx; torque[i][1] -= ty; torque[i][2] -= tz; if (NEWTON_PAIR || j < nlocal) { torque[j][0] += tx; torque[j][1] += ty; torque[j][2] += tz; } } if (EVFLAG) ev_tally_xyz(i,j,nlocal,NEWTON_PAIR, 0.0,0.0,-fx,-fy,-fz,delx,dely,delz); } } } } /* ---------------------------------------------------------------------- */ double PairBrownianOMP::memory_usage() { double bytes = memory_usage_thr(); bytes += PairBrownian::memory_usage(); bytes += comm->nthreads * sizeof(RanMars*); bytes += comm->nthreads * sizeof(RanMars); return bytes; }