/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "math.h" #include "float.h" #include "pair_peri_lps_omp.h" #include "fix.h" #include "fix_peri_neigh.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "force.h" #include "memory.h" #include "lattice.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "math_const.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; /* ---------------------------------------------------------------------- */ PairPeriLPSOMP::PairPeriLPSOMP(LAMMPS *lmp) : PairPeriLPS(lmp), ThrOMP(lmp, THR_PAIR) { suffix_flag |= Suffix::OMP; respa_enable = 0; } /* ---------------------------------------------------------------------- */ void PairPeriLPSOMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = vflag_fdotr = eflag_global = eflag_atom = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = list->inum; // grow bond forces array if necessary if (atom->nmax > nmax) { memory->destroy(s0_new); memory->destroy(theta); nmax = atom->nmax; memory->create(s0_new,nmax,"pair:s0_new"); memory->create(theta,nmax,"pair:theta"); } #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); if (evflag) { if (eflag) { if (force->newton_pair) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_pair) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_pair) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void PairPeriLPSOMP::eval(int iifrom, int iito, ThrData * const thr) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz; double xtmp0,ytmp0,ztmp0,delx0,dely0,delz0,rsq0; double rsq,r,dr,rk,evdwl,fpair,fbond; int *ilist,*jlist,*numneigh,**firstneigh; double d_ij,delta,stretch; evdwl = 0.0; const double * const * const x = atom->x; double * const * const f = thr->get_f(); const int * const type = atom->type; const int nlocal = atom->nlocal; double fxtmp,fytmp,fztmp; double *vfrac = atom->vfrac; double *s0 = atom->s0; double **x0 = atom->x0; double **r0 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r0; int **partner = ((FixPeriNeigh *) modify->fix[ifix_peri])->partner; int *npartner = ((FixPeriNeigh *) modify->fix[ifix_peri])->npartner; double *wvolume = ((FixPeriNeigh *) modify->fix[ifix_peri])->wvolume; // lc = lattice constant // init_style guarantees it's the same in x, y, and z double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double vfrac_scale = 1.0; // short-range forces int periodic = (domain->xperiodic || domain->yperiodic || domain->zperiodic); ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms // need minimg() for x0 difference since not ghosted for (ii = iifrom; ii < iito; ++ii) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; fxtmp=fytmp=fztmp=0.0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); rsq0 = delx0*delx0 + dely0*dely0 + delz0*delz0; jtype = type[j]; r = sqrt(rsq); // short-range interaction distance based on initial particle position // 0.9 and 1.35 are constants d_ij = MIN(0.9*sqrt(rsq0),1.35*lc); // short-range contact forces // 15 is constant taken from the EMU Theory Manual // Silling, 12 May 2005, p 18 if (r < d_ij) { dr = r - d_ij; // kshort based upon short-range force constant // of the bond-based theory used in PMB model double kshort = (15.0 * 18.0 * bulkmodulus[itype][itype]) / (MY_PI * cutsq[itype][jtype] * cutsq[itype][jtype]); rk = (kshort * vfrac[j]) * (dr / cut[itype][jtype]); if (r > 0.0) fpair = -(rk/r); else fpair = 0.0; fxtmp += delx*fpair; fytmp += dely*fpair; fztmp += delz*fpair; if (NEWTON_PAIR || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (EFLAG) evdwl = 0.5*rk*dr; if (EVFLAG) ev_tally_thr(this,i,j,nlocal,NEWTON_PAIR,evdwl,0.0, fpair*vfrac[i],delx,dely,delz,thr); } } f[i][0] += fxtmp; f[i][1] += fytmp; f[i][2] += fztmp; } // wait until all threads are done since we // need to distribute the work differently. sync_threads(); #if defined(_OPENMP) // each thread works on a fixed chunk of atoms. const int idelta = 1 + nlocal/comm->nthreads; iifrom = thr->get_tid()*idelta; iito = ((iifrom + idelta) > nlocal) ? nlocal : (iifrom + idelta); #else iifrom = 0; iito = nlocal; #endif // Compute the dilatation on each particle if (iifrom < nlocal) compute_dilatation_thr(iifrom, iito); // wait until all threads are done before communication sync_threads(); #if defined(_OPENMP) #pragma omp master #endif { // communicate dilatation (theta) of each particle comm->forward_comm_pair(this); // communicate weighted volume (wvolume) upon every reneighbor if (neighbor->ago == 0) comm->forward_comm_fix(modify->fix[ifix_peri]); } sync_threads(); // Volume-dependent part of the energy if (EFLAG) { for (i = iifrom; i < iito; i++) { itype = type[i]; e_tally_thr(this, i, i, nlocal, NEWTON_PAIR, 0.5 * bulkmodulus[itype][itype] * (theta[i] * theta[i]), 0.0, thr); } } // loop over my particles and their partners // partner list contains all bond partners, so I-J appears twice // if bond already broken, skip this partner // first = true if this is first neighbor of particle i bool first; double omega_minus, omega_plus; for (i = iifrom; i < iito; ++i) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; itype = type[i]; jnum = npartner[i]; first = true; for (jj = 0; jj < jnum; jj++) { if (partner[i][jj] == 0) continue; j = atom->map(partner[i][jj]); // check if lost a partner without first breaking bond if (j < 0) { partner[i][jj] = 0; continue; } // compute force density, add to PD equation of motion delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; if (periodic) domain->minimum_image(delx,dely,delz); rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); jtype = type[j]; delta = cut[itype][jtype]; r = sqrt(rsq); dr = r - r0[i][jj]; // avoid roundoff errors if (fabs(dr) < 2.2204e-016) dr = 0.0; // scale vfrac[j] if particle j near the horizon if ((fabs(r0[i][jj] - delta)) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((delta - half_lc)/(2*half_lc) ) ); else vfrac_scale = 1.0; omega_plus = influence_function(-1.0*delx0,-1.0*dely0,-1.0*delz0); omega_minus = influence_function(delx0,dely0,delz0); rk = ( (3.0 * bulkmodulus[itype][itype]) - (5.0 * shearmodulus[itype][itype]) ) * vfrac[j] * vfrac_scale * ( (omega_plus * theta[i] / wvolume[i]) + ( omega_minus * theta[j] / wvolume[j] ) ) * r0[i][jj]; rk += 15.0 * ( shearmodulus[itype][itype] * vfrac[j] * vfrac_scale ) * ( (omega_plus / wvolume[i]) + (omega_minus / wvolume[j]) ) * dr; if (r > 0.0) fbond = -(rk/r); else fbond = 0.0; f[i][0] += delx*fbond; f[i][1] += dely*fbond; f[i][2] += delz*fbond; // since I-J is double counted, set newton off & use 1/2 factor and I,I double deviatoric_extension = dr - (theta[i]* r0[i][jj] / 3.0); if (EFLAG) evdwl = 0.5 * 15 * (shearmodulus[itype][itype]/wvolume[i]) * omega_plus*(deviatoric_extension * deviatoric_extension) * vfrac[j] * vfrac_scale; if (EVFLAG) ev_tally_thr(this,i,i,nlocal,0,0.5*evdwl,0.0, 0.5*fbond*vfrac[i],delx,dely,delz,thr); // find stretch in bond I-J and break if necessary // use s0 from previous timestep stretch = dr / r0[i][jj]; if (stretch > MIN(s0[i],s0[j])) partner[i][jj] = 0; // update s0 for next timestep if (first) s0_new[i] = s00[itype][jtype] - (alpha[itype][jtype] * stretch); else s0_new[i] = MAX(s0_new[i],s00[itype][jtype] - (alpha[itype][jtype] * stretch)); first = false; } } sync_threads(); // store new s0 (in parallel) if (iifrom < nlocal) for (i = iifrom; i < iito; i++) s0[i] = s0_new[i]; } /* ---------------------------------------------------------------------- */ void PairPeriLPSOMP::compute_dilatation_thr(int ifrom, int ito) { int i,j,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz; double xtmp0,ytmp0,ztmp0,delx0,dely0,delz0; double rsq,r,dr; double delta; double **x = atom->x; int *type = atom->type; double **x0 = atom->x0; double *vfrac = atom->vfrac; double vfrac_scale = 1.0; double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double **r0 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r0; int **partner = ((FixPeriNeigh *) modify->fix[ifix_peri])->partner; int *npartner = ((FixPeriNeigh *) modify->fix[ifix_peri])->npartner; double *wvolume = ((FixPeriNeigh *) modify->fix[ifix_peri])->wvolume; int periodic = domain->xperiodic || domain->yperiodic || domain->zperiodic; // compute the dilatation theta for (i = ifrom; i < ito; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; jnum = npartner[i]; theta[i] = 0.0; itype = type[i]; for (jj = 0; jj < jnum; jj++) { // if bond already broken, skip this partner if (partner[i][jj] == 0) continue; // Look up local index of this partner particle j = atom->map(partner[i][jj]); // Skip if particle is "lost" if (j < 0) continue; // Compute force density and add to PD equation of motion delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; if (periodic) domain->minimum_image(delx,dely,delz); rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); r = sqrt(rsq); dr = r - r0[i][jj]; if (fabs(dr) < 2.2204e-016) dr = 0.0; jtype = type[j]; delta = cut[itype][jtype]; // scale vfrac[j] if particle j near the horizon if ((fabs(r0[i][jj] - delta)) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((delta - half_lc)/(2*half_lc) ) ); else vfrac_scale = 1.0; theta[i] += influence_function(delx0, dely0, delz0) * r0[i][jj] * dr * vfrac[j] * vfrac_scale; } // if wvolume[i] is zero, then particle i has no bonds // therefore, the dilatation is set to if (wvolume[i] != 0.0) theta[i] = (3.0/wvolume[i]) * theta[i]; else theta[i] = 0; } } /* ---------------------------------------------------------------------- */ double PairPeriLPSOMP::memory_usage() { double bytes = memory_usage_thr(); bytes += PairPeriLPS::memory_usage(); return bytes; }