/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_table_gpu.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "universe.h" #include "update.h" #include "domain.h" #include "string.h" #include "gpu_extra.h" #define LOOKUP 0 #define LINEAR 1 #define SPLINE 2 #define BITMAP 3 // External functions from cuda library for atom decomposition int table_gpu_init(const int ntypes, double **cutsq, double ***host_table_coeffs, double **host_table_data, double *special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen, int tabstyle, int ntables, int tablength); void table_gpu_clear(); int ** table_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, int *tag, int **nspecial, int **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success); void table_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success); double table_gpu_bytes(); using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairTableGPU::PairTableGPU(LAMMPS *lmp) : PairTable(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; cpu_time = 0.0; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairTableGPU::~PairTableGPU() { table_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairTableGPU::compute(int eflag, int vflag) { if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = table_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; table_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success); } if (!success) error->one(FLERR,"Insufficient memory on accelerator"); if (host_startnewton_pair) error->all(FLERR,"Cannot use newton pair with table/gpu pair style"); int ntypes = atom->ntypes; // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i,j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; // pack tables and send them to device double ***table_coeffs = NULL; double **table_data = NULL; memory->create(table_coeffs, ntypes+1, ntypes+1, 6, "table:coeffs"); Table *tb; for (int i = 1; i <= atom->ntypes; i++) for (int j = 1; j <= atom->ntypes; j++) { int n = tabindex[i][j]; tb = &tables[n]; table_coeffs[i][j][0] = n; table_coeffs[i][j][1] = tb->nshiftbits; table_coeffs[i][j][2] = tb->nmask; table_coeffs[i][j][3] = tb->innersq; table_coeffs[i][j][4] = tb->invdelta; table_coeffs[i][j][5] = tb->deltasq6; } if (tabstyle != BITMAP) { memory->create(table_data, ntables, 6*tablength, "table:data"); for (int n = 0; n < ntables; n++) { tb = &tables[n]; if (tabstyle == LOOKUP) { for (int k = 0; ke[k]; table_data[n][6*k+2] = tb->f[k]; } } else if (tabstyle == LINEAR) { for (int k = 0; krsq[k]; table_data[n][6*k+1] = tb->e[k]; table_data[n][6*k+2] = tb->f[k]; if (kde[k]; table_data[n][6*k+4] = tb->df[k]; } } } else if (tabstyle == SPLINE) { for (int k = 0; krsq[k]; table_data[n][6*k+1] = tb->e[k]; table_data[n][6*k+2] = tb->f[k]; table_data[n][6*k+3] = tb->e2[k]; table_data[n][6*k+4] = tb->f2[k]; } } } } else { int ntable = 1 << tablength; memory->create(table_data, ntables, 6*ntable, "table:data"); for (int n = 0; n < ntables; n++) { tb = &tables[n]; for (int k = 0; krsq[k]; table_data[n][6*k+1] = tb->e[k]; table_data[n][6*k+2] = tb->f[k]; table_data[n][6*k+3] = tb->de[k]; table_data[n][6*k+4] = tb->df[k]; table_data[n][6*k+5] = tb->drsq[k]; } } } int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = table_gpu_init(atom->ntypes+1, cutsq, table_coeffs, table_data, force->special_lj, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen, tabstyle, ntables, tablength); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } memory->destroy(table_coeffs); memory->destroy(table_data); } /* ---------------------------------------------------------------------- */ double PairTableGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + table_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairTableGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype,itable; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,factor_lj,fraction,value,a,b; int *jlist; Table *tb; union_int_float_t rsq_lookup; int tlm1 = tablength - 1; double **x = atom->x; double **f = atom->f; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { tb = &tables[tabindex[itype][jtype]]; if (rsq < tb->innersq) error->one(FLERR,"Pair distance < table inner cutoff"); if (tabstyle == LOOKUP) { itable = static_cast ((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR,"Pair distance > table outer cutoff"); fpair = factor_lj * tb->f[itable]; } else if (tabstyle == LINEAR) { itable = static_cast ((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR,"Pair distance > table outer cutoff"); fraction = (rsq - tb->rsq[itable]) * tb->invdelta; value = tb->f[itable] + fraction*tb->df[itable]; fpair = factor_lj * value; } else if (tabstyle == SPLINE) { itable = static_cast ((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR,"Pair distance > table outer cutoff"); b = (rsq - tb->rsq[itable]) * tb->invdelta; a = 1.0 - b; value = a * tb->f[itable] + b * tb->f[itable+1] + ((a*a*a-a)*tb->f2[itable] + (b*b*b-b)*tb->f2[itable+1]) * tb->deltasq6; fpair = factor_lj * value; } else { rsq_lookup.f = rsq; itable = rsq_lookup.i & tb->nmask; itable >>= tb->nshiftbits; fraction = (rsq_lookup.f - tb->rsq[itable]) * tb->drsq[itable]; value = tb->f[itable] + fraction*tb->df[itable]; fpair = factor_lj * value; } f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (eflag) { if (tabstyle == LOOKUP) evdwl = tb->e[itable]; else if (tabstyle == LINEAR || tabstyle == BITMAP) evdwl = tb->e[itable] + fraction*tb->de[itable]; else evdwl = a * tb->e[itable] + b * tb->e[itable+1] + ((a*a*a-a)*tb->e2[itable] + (b*b*b-b)*tb->e2[itable+1]) * tb->deltasq6; evdwl *= factor_lj; } if (evflag) ev_tally_full(i,evdwl,0.0,fpair,delx,dely,delz); } } } }