/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (Northwestern) ------------------------------------------------------------------------- */ #include "pair_lj_cut_dipole_long_gpu.h" #include #include #include #include #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "force.h" #include "kspace.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "math_const.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "universe.h" #include "update.h" #include "domain.h" #include "gpu_extra.h" #include "suffix.h" #define EWALD_F 1.12837917 #define EWALD_P 0.3275911 #define A1 0.254829592 #define A2 -0.284496736 #define A3 1.421413741 #define A4 -1.453152027 #define A5 1.061405429 using namespace LAMMPS_NS; using namespace MathConst; // External functions from cuda library for atom decomposition int dplj_gpu_init(const int ntypes, double **cutsq, double **host_lj1, double **host_lj2, double **host_lj3, double **host_lj4, double **offset, double *special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen, double **host_cut_ljsq, const double host_cut_coulsq, double *host_special_coul, const double qqrd2e, const double g_ewald); void dplj_gpu_clear(); int ** dplj_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success, double *host_q, double **host_mu, double *boxlo, double *prd); void dplj_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success, double *host_q, double **host_mu, const int nlocal, double *boxlo, double *prd); double dplj_gpu_bytes(); /* ---------------------------------------------------------------------- */ PairLJCutDipoleLongGPU::PairLJCutDipoleLongGPU(LAMMPS *lmp) : PairLJCutDipoleLong(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; suffix_flag |= Suffix::GPU; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairLJCutDipoleLongGPU::~PairLJCutDipoleLongGPU() { dplj_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairLJCutDipoleLongGPU::compute(int eflag, int vflag) { ev_init(eflag,vflag); int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = dplj_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success, atom->q, atom->mu, domain->boxlo, domain->prd); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; dplj_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->q, atom->mu, atom->nlocal, domain->boxlo, domain->prd); } if (!success) error->one(FLERR,"Insufficient memory on accelerator"); if (host_startq_flag || !atom->mu_flag || !atom->torque_flag) error->all(FLERR,"Pair dipole/cut/gpu requires atom attributes q, mu, torque"); if (force->newton_pair) error->all(FLERR,"Cannot use newton pair with dipole/cut/gpu pair style"); if (strcmp(update->unit_style,"electron") == 0) error->all(FLERR,"Cannot (yet) use 'electron' units with dipoles"); // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i,j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; cut_coulsq = cut_coul * cut_coul; // insure use of KSpace long-range solver, set g_ewald if (force->kspace == NULL) error->all(FLERR,"Pair style requires a KSpace style"); g_ewald = force->kspace->g_ewald; // setup force tables if (ncoultablebits) init_tables(cut_coul,NULL); int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = dplj_gpu_init(atom->ntypes+1, cutsq, lj1, lj2, lj3, lj4, offset, force->special_lj, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen, cut_ljsq, cut_coulsq, force->special_coul, force->qqrd2e, g_ewald); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } } /* ---------------------------------------------------------------------- */ double PairLJCutDipoleLongGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + dplj_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairLJCutDipoleLongGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype; double qtmp,xtmp,ytmp,ztmp,delx,dely,delz; double rsq,r,rinv,r2inv,r6inv; double forcecoulx,forcecouly,forcecoulz,fforce; double tixcoul,tiycoul,tizcoul; double fx,fy,fz,fdx,fdy,fdz,fax,fay,faz; double pdotp,pidotr,pjdotr,pre1,pre2,pre3; double grij,expm2,t,erfc; double g0,g1,g2,b0,b1,b2,b3,d0,d1,d2,d3; double zdix,zdiy,zdiz,zdjx,zdjy,zdjz,zaix,zaiy,zaiz,zajx,zajy,zajz; double g0b1_g1b2_g2b3,g0d1_g1d2_g2d3; double forcelj,factor_coul,factor_lj,facm1; double evdwl,ecoul; int *jlist; evdwl = ecoul = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; double *q = atom->q; double **mu = atom->mu; double **torque = atom->torque; int *type = atom->type; double *special_coul = force->special_coul; double *special_lj = force->special_lj; double qqrd2e = force->qqrd2e; pre1 = 2.0 * g_ewald / MY_PIS; pre2 = 4.0 * pow(g_ewald,3.0) / MY_PIS; pre3 = 8.0 * pow(g_ewald,5.0) / MY_PIS; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; factor_coul = special_coul[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r2inv = 1.0/rsq; rinv = sqrt(r2inv); if (rsq < cut_coulsq) { r = sqrt(rsq); grij = g_ewald * r; expm2 = exp(-grij*grij); t = 1.0 / (1.0 + EWALD_P*grij); erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2; pdotp = mu[i][0]*mu[j][0] + mu[i][1]*mu[j][1] + mu[i][2]*mu[j][2]; pidotr = mu[i][0]*delx + mu[i][1]*dely + mu[i][2]*delz; pjdotr = mu[j][0]*delx + mu[j][1]*dely + mu[j][2]*delz; g0 = qtmp*q[j]; g1 = qtmp*pjdotr - q[j]*pidotr + pdotp; g2 = -pidotr*pjdotr; if (factor_coul > 0.0) { b0 = erfc * rinv; b1 = (b0 + pre1*expm2) * r2inv; b2 = (3.0*b1 + pre2*expm2) * r2inv; b3 = (5.0*b2 + pre3*expm2) * r2inv; g0b1_g1b2_g2b3 = g0*b1 + g1*b2 + g2*b3; fdx = delx * g0b1_g1b2_g2b3 - b1 * (qtmp*mu[j][0] - q[j]*mu[i][0]) + b2 * (pjdotr*mu[i][0] + pidotr*mu[j][0]); fdy = dely * g0b1_g1b2_g2b3 - b1 * (qtmp*mu[j][1] - q[j]*mu[i][1]) + b2 * (pjdotr*mu[i][1] + pidotr*mu[j][1]); fdz = delz * g0b1_g1b2_g2b3 - b1 * (qtmp*mu[j][2] - q[j]*mu[i][2]) + b2 * (pjdotr*mu[i][2] + pidotr*mu[j][2]); zdix = delx * (q[j]*b1 + b2*pjdotr) - b1*mu[j][0]; zdiy = dely * (q[j]*b1 + b2*pjdotr) - b1*mu[j][1]; zdiz = delz * (q[j]*b1 + b2*pjdotr) - b1*mu[j][2]; zdjx = delx * (-qtmp*b1 + b2*pidotr) - b1*mu[i][0]; zdjy = dely * (-qtmp*b1 + b2*pidotr) - b1*mu[i][1]; zdjz = delz * (-qtmp*b1 + b2*pidotr) - b1*mu[i][2]; if (factor_coul < 1.0) { fdx *= factor_coul; fdy *= factor_coul; fdz *= factor_coul; zdix *= factor_coul; zdiy *= factor_coul; zdiz *= factor_coul; zdjx *= factor_coul; zdjy *= factor_coul; zdjz *= factor_coul; } } else { fdx = fdy = fdz = 0.0; zdix = zdiy = zdiz = 0.0; zdjx = zdjy = zdjz = 0.0; } if (factor_coul < 1.0) { d0 = (erfc - 1.0) * rinv; d1 = (d0 + pre1*expm2) * r2inv; d2 = (3.0*d1 + pre2*expm2) * r2inv; d3 = (5.0*d2 + pre3*expm2) * r2inv; g0d1_g1d2_g2d3 = g0*d1 + g1*d2 + g2*d3; fax = delx * g0d1_g1d2_g2d3 - d1 * (qtmp*mu[j][0] - q[j]*mu[i][0]) + d2 * (pjdotr*mu[i][0] + pidotr*mu[j][0]); fay = dely * g0d1_g1d2_g2d3 - d1 * (qtmp*mu[j][1] - q[j]*mu[i][1]) + d2 * (pjdotr*mu[i][1] + pidotr*mu[j][1]); faz = delz * g0d1_g1d2_g2d3 - d1 * (qtmp*mu[j][2] - q[j]*mu[i][2]) + d2 * (pjdotr*mu[i][2] + pidotr*mu[j][2]); zaix = delx * (q[j]*d1 + d2*pjdotr) - d1*mu[j][0]; zaiy = dely * (q[j]*d1 + d2*pjdotr) - d1*mu[j][1]; zaiz = delz * (q[j]*d1 + d2*pjdotr) - d1*mu[j][2]; zajx = delx * (-qtmp*d1 + d2*pidotr) - d1*mu[i][0]; zajy = dely * (-qtmp*d1 + d2*pidotr) - d1*mu[i][1]; zajz = delz * (-qtmp*d1 + d2*pidotr) - d1*mu[i][2]; if (factor_coul > 0.0) { facm1 = 1.0 - factor_coul; fax *= facm1; fay *= facm1; faz *= facm1; zaix *= facm1; zaiy *= facm1; zaiz *= facm1; zajx *= facm1; zajy *= facm1; zajz *= facm1; } } else { fax = fay = faz = 0.0; zaix = zaiy = zaiz = 0.0; zajx = zajy = zajz = 0.0; } forcecoulx = fdx + fax; forcecouly = fdy + fay; forcecoulz = fdz + faz; tixcoul = mu[i][1]*(zdiz + zaiz) - mu[i][2]*(zdiy + zaiy); tiycoul = mu[i][2]*(zdix + zaix) - mu[i][0]*(zdiz + zaiz); tizcoul = mu[i][0]*(zdiy + zaiy) - mu[i][1]*(zdix + zaix); } else { forcecoulx = forcecouly = forcecoulz = 0.0; tixcoul = tiycoul = tizcoul = 0.0; } // LJ interaction if (rsq < cut_ljsq[itype][jtype]) { r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); fforce = factor_lj * forcelj*r2inv; } else fforce = 0.0; // total force fx = qqrd2e*forcecoulx + delx*fforce; fy = qqrd2e*forcecouly + dely*fforce; fz = qqrd2e*forcecoulz + delz*fforce; // force & torque accumulation f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; torque[i][0] += qqrd2e*tixcoul; torque[i][1] += qqrd2e*tiycoul; torque[i][2] += qqrd2e*tizcoul; if (eflag) { if (rsq < cut_coulsq && factor_coul > 0.0) { ecoul = qqrd2e*(b0*g0 + b1*g1 + b2*g2); if (factor_coul < 1.0) { ecoul *= factor_coul; ecoul += (1-factor_coul) * qqrd2e * (d0*g0 + d1*g1 + d2*g2); } } else ecoul = 0.0; if (rsq < cut_ljsq[itype][jtype]) { evdwl = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]) - offset[itype][jtype]; evdwl *= factor_lj; } else evdwl = 0.0; } if (evflag) ev_tally_xyz_full(i,evdwl,ecoul,fx,fy,fz,delx,dely,delz); } } } }