/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_sna_atom.h" #include #include #include "sna.h" #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "force.h" #include "pair.h" #include "comm.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; ComputeSNAAtom::ComputeSNAAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), cutsq(NULL), list(NULL), sna(NULL), radelem(NULL), wjelem(NULL) { double rmin0, rfac0; int twojmax, switchflag, bzeroflag; radelem = NULL; wjelem = NULL; int ntypes = atom->ntypes; int nargmin = 6+2*ntypes; if (narg < nargmin) error->all(FLERR,"Illegal compute sna/atom command"); // default values rmin0 = 0.0; switchflag = 1; bzeroflag = 1; quadraticflag = 0; // offset by 1 to match up with types memory->create(radelem,ntypes+1,"sna/atom:radelem"); memory->create(wjelem,ntypes+1,"sna/atom:wjelem"); rcutfac = atof(arg[3]); rfac0 = atof(arg[4]); twojmax = atoi(arg[5]); for(int i = 0; i < ntypes; i++) radelem[i+1] = atof(arg[6+i]); for(int i = 0; i < ntypes; i++) wjelem[i+1] = atof(arg[6+ntypes+i]); // construct cutsq double cut; cutmax = 0.0; memory->create(cutsq,ntypes+1,ntypes+1,"sna/atom:cutsq"); for(int i = 1; i <= ntypes; i++) { cut = 2.0*radelem[i]*rcutfac; if (cut > cutmax) cutmax = cut; cutsq[i][i] = cut*cut; for(int j = i+1; j <= ntypes; j++) { cut = (radelem[i]+radelem[j])*rcutfac; cutsq[i][j] = cutsq[j][i] = cut*cut; } } // process optional args int iarg = nargmin; while (iarg < narg) { if (strcmp(arg[iarg],"rmin0") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute sna/atom command"); rmin0 = atof(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"switchflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute sna/atom command"); switchflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"bzeroflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute sna/atom command"); bzeroflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"quadraticflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute sna/atom command"); quadraticflag = atoi(arg[iarg+1]); iarg += 2; } else error->all(FLERR,"Illegal compute sna/atom command"); } snaptr = new SNA(lmp,rfac0,twojmax, rmin0,switchflag,bzeroflag); ncoeff = snaptr->ncoeff; size_peratom_cols = ncoeff; if (quadraticflag) size_peratom_cols += (ncoeff*(ncoeff+1))/2; peratom_flag = 1; nmax = 0; sna = NULL; } /* ---------------------------------------------------------------------- */ ComputeSNAAtom::~ComputeSNAAtom() { memory->destroy(sna); memory->destroy(radelem); memory->destroy(wjelem); memory->destroy(cutsq); delete snaptr; } /* ---------------------------------------------------------------------- */ void ComputeSNAAtom::init() { if (force->pair == NULL) error->all(FLERR,"Compute sna/atom requires a pair style be defined"); if (cutmax > force->pair->cutforce) error->all(FLERR,"Compute sna/atom cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"sna/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute sna/atom"); snaptr->init(); } /* ---------------------------------------------------------------------- */ void ComputeSNAAtom::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeSNAAtom::compute_peratom() { invoked_peratom = update->ntimestep; // grow sna array if necessary if (atom->nmax > nmax) { memory->destroy(sna); nmax = atom->nmax; memory->create(sna,nmax,size_peratom_cols,"sna/atom:sna"); array_atom = sna; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); const int inum = list->inum; const int* const ilist = list->ilist; const int* const numneigh = list->numneigh; int** const firstneigh = list->firstneigh; int * const type = atom->type; // compute sna for each atom in group // use full neighbor list to count atoms less than cutoff double** const x = atom->x; const int* const mask = atom->mask; for (int ii = 0; ii < inum; ii++) { const int i = ilist[ii]; if (mask[i] & groupbit) { const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; const int itype = type[i]; const double radi = radelem[itype]; const int* const jlist = firstneigh[i]; const int jnum = numneigh[i]; // insure rij, inside, and typej are of size jnum snaptr->grow_rij(jnum); // rij[][3] = displacements between atom I and those neighbors // inside = indices of neighbors of I within cutoff // typej = types of neighbors of I within cutoff int ninside = 0; for (int jj = 0; jj < jnum; jj++) { int j = jlist[jj]; j &= NEIGHMASK; const double delx = xtmp - x[j][0]; const double dely = ytmp - x[j][1]; const double delz = ztmp - x[j][2]; const double rsq = delx*delx + dely*dely + delz*delz; int jtype = type[j]; if (rsq < cutsq[itype][jtype] && rsq>1e-20) { snaptr->rij[ninside][0] = delx; snaptr->rij[ninside][1] = dely; snaptr->rij[ninside][2] = delz; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jtype]; snaptr->rcutij[ninside] = (radi+radelem[jtype])*rcutfac; ninside++; } } snaptr->compute_ui(ninside); snaptr->compute_zi(); snaptr->compute_bi(); for (int icoeff = 0; icoeff < ncoeff; icoeff++) sna[i][icoeff] = snaptr->blist[icoeff]; if (quadraticflag) { int ncount = ncoeff; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { double bi = snaptr->blist[icoeff]; // diagonal element of quadratic matrix sna[i][ncount++] = 0.5*bi*bi; // upper-triangular elements of quadratic matrix for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) sna[i][ncount++] = bi*snaptr->blist[jcoeff]; } } } else { for (int icoeff = 0; icoeff < size_peratom_cols; icoeff++) sna[i][icoeff] = 0.0; } } } /* ---------------------------------------------------------------------- memory usage ------------------------------------------------------------------------- */ double ComputeSNAAtom::memory_usage() { double bytes = nmax*size_peratom_cols * sizeof(double); // sna bytes += snaptr->memory_usage(); // SNA object return bytes; }