/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Aidan Thompson (SNL) ------------------------------------------------------------------------- */ #include "pair_lj_cubic.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include #include "pair_lj_cubic_const.h" using namespace LAMMPS_NS; using namespace PairLJCubicConstants; /* ---------------------------------------------------------------------- */ PairLJCubic::PairLJCubic(LAMMPS *_lmp) : Pair(_lmp) {} /* ---------------------------------------------------------------------- */ PairLJCubic::~PairLJCubic() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(cut_inner); memory->destroy(cut_inner_sq); memory->destroy(epsilon); memory->destroy(sigma); memory->destroy(lj1); memory->destroy(lj2); memory->destroy(lj3); memory->destroy(lj4); } } /* ---------------------------------------------------------------------- */ void PairLJCubic::compute(int eflag, int vflag) { int i, j, ii, jj, inum, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair; double rsq, r2inv, r6inv, forcelj, factor_lj; double r, t, rmin; int *ilist, *jlist, *numneigh, **firstneigh; evdwl = 0.0; ev_init(eflag, vflag); double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r2inv = 1.0 / rsq; if (rsq <= cut_inner_sq[itype][jtype]) { r6inv = r2inv * r2inv * r2inv; forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]); } else { r = sqrt(rsq); rmin = sigma[itype][jtype] * RT6TWO; t = (r - cut_inner[itype][jtype]) / rmin; forcelj = epsilon[itype][jtype] * (-DPHIDS + A3 * t * t / 2.0) * r / rmin; } fpair = factor_lj * forcelj * r2inv; f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx * fpair; f[j][1] -= dely * fpair; f[j][2] -= delz * fpair; } if (eflag) { if (rsq <= cut_inner_sq[itype][jtype]) evdwl = r6inv * (lj3[itype][jtype] * r6inv - lj4[itype][jtype]); else evdwl = epsilon[itype][jtype] * (PHIS + DPHIDS * t - A3 * t * t * t / 6.0); evdwl *= factor_lj; if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz); } } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairLJCubic::allocate() { allocated = 1; const int np1 = atom->ntypes + 1; memory->create(setflag, np1, np1, "pair:setflag"); for (int i = 1; i < np1; i++) for (int j = i; j < np1; j++) setflag[i][j] = 0; memory->create(cutsq, np1, np1, "pair:cutsq"); memory->create(cut, np1, np1, "pair:cut"); memory->create(cut_inner, np1, np1, "pair:cut_inner"); memory->create(cut_inner_sq, np1, np1, "pair:cut_inner_sq"); memory->create(epsilon, np1, np1, "pair:epsilon"); memory->create(sigma, np1, np1, "pair:sigma"); memory->create(lj1, np1, np1, "pair:lj1"); memory->create(lj2, np1, np1, "pair:lj2"); memory->create(lj3, np1, np1, "pair:lj3"); memory->create(lj4, np1, np1, "pair:lj4"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairLJCubic::settings(int narg, char ** /*arg*/) { if (narg != 0) error->all(FLERR, "Illegal pair_style command"); // NOTE: lj/cubic has no global cutoff. instead the cutoff is // inferred from the lj parameters. so we must not reset cutoffs here. } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairLJCubic::coeff(int narg, char **arg) { if (narg != 4) error->all(FLERR, "Incorrect args for pair coefficients" + utils::errorurl(21)); if (!allocated) allocate(); int ilo, ihi, jlo, jhi; utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error); utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error); double epsilon_one = utils::numeric(FLERR, arg[2], false, lmp); double sigma_one = utils::numeric(FLERR, arg[3], false, lmp); double rmin = sigma_one * RT6TWO; int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo, i); j <= jhi; j++) { epsilon[i][j] = epsilon_one; sigma[i][j] = sigma_one; cut_inner[i][j] = rmin * SS; cut[i][j] = rmin * SM; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients" + utils::errorurl(21)); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairLJCubic::init_one(int i, int j) { if (setflag[i][j] == 0) { epsilon[i][j] = mix_energy(epsilon[i][i], epsilon[j][j], sigma[i][i], sigma[j][j]); sigma[i][j] = mix_distance(sigma[i][i], sigma[j][j]); cut_inner[i][j] = mix_distance(cut_inner[i][i], cut_inner[j][j]); cut[i][j] = mix_distance(cut[i][i], cut[j][j]); } cut_inner_sq[i][j] = cut_inner[i][j] * cut_inner[i][j]; lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j], 12.0); lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j], 6.0); lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j], 12.0); lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j], 6.0); cut_inner[j][i] = cut_inner[i][j]; cut_inner_sq[j][i] = cut_inner_sq[i][j]; epsilon[j][i] = epsilon[i][j]; sigma[j][i] = sigma[i][j]; lj1[j][i] = lj1[i][j]; lj2[j][i] = lj2[i][j]; lj3[j][i] = lj3[i][j]; lj4[j][i] = lj4[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLJCubic::write_restart(FILE *fp) { write_restart_settings(fp); int i, j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j], sizeof(int), 1, fp); if (setflag[i][j]) { fwrite(&epsilon[i][j], sizeof(double), 1, fp); fwrite(&sigma[i][j], sizeof(double), 1, fp); fwrite(&cut_inner[i][j], sizeof(double), 1, fp); fwrite(&cut[i][j], sizeof(double), 1, fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLJCubic::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i, j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error); MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR, &epsilon[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &sigma[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &cut_inner[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error); } MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&sigma[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&cut_inner[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world); } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLJCubic::write_restart_settings(FILE *fp) { fwrite(&mix_flag, sizeof(int), 1, fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLJCubic::read_restart_settings(FILE *fp) { int me = comm->me; if (me == 0) { utils::sfread(FLERR, &mix_flag, sizeof(int), 1, fp, nullptr, error); } MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world); } /* ---------------------------------------------------------------------- */ double PairLJCubic::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq, double /*factor_coul*/, double factor_lj, double &fforce) { double r2inv, r6inv, forcelj, philj; double r, t; double rmin; // this is a truncated potential with an implicit cutoff if (rsq >= cutsq[itype][jtype]) { fforce = 0.0; return 0.0; } r2inv = 1.0 / rsq; if (rsq <= cut_inner_sq[itype][jtype]) { r6inv = r2inv * r2inv * r2inv; forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]); } else { r = sqrt(rsq); rmin = sigma[itype][jtype] * RT6TWO; t = (r - cut_inner[itype][jtype]) / rmin; forcelj = epsilon[itype][jtype] * (-DPHIDS + A3 * t * t / 2.0) * r / rmin; } fforce = factor_lj * forcelj * r2inv; if (rsq <= cut_inner_sq[itype][jtype]) philj = r6inv * (lj3[itype][jtype] * r6inv - lj4[itype][jtype]); else philj = epsilon[itype][jtype] * (PHIS + DPHIDS * t - A3 * t * t * t / 6.0); return factor_lj * philj; } /* ---------------------------------------------------------------------- */ void *PairLJCubic::extract(const char *str, int &dim) { dim = 2; if (strcmp(str, "epsilon") == 0) return (void *) epsilon; if (strcmp(str, "sigma") == 0) return (void *) sigma; return nullptr; }