// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "omp_compat.h" #include "angle_cosine_periodic_omp.h" #include #include "atom.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "math_special.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathSpecial; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleCosinePeriodicOMP::AngleCosinePeriodicOMP(class LAMMPS *lmp) : AngleCosinePeriodic(lmp), ThrOMP(lmp,THR_ANGLE) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void AngleCosinePeriodicOMP::compute(int eflag, int vflag) { ev_init(eflag,vflag); const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->nanglelist; #if defined(_OPENMP) #pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, cvatom, thr); if (inum > 0) { if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } thr->timer(Timer::BOND); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void AngleCosinePeriodicOMP::eval(int nfrom, int nto, ThrData * const thr) { int i,i1,i2,i3,n,m,type,b_factor; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double rsq1,rsq2,r1,r2,c,a,a11,a12,a22; double tn,tn_1,tn_2,un,un_1,un_2; const auto * _noalias const x = (dbl3_t *) atom->x[0]; auto * _noalias const f = (dbl3_t *) thr->get_f()[0]; const int4_t * _noalias const anglelist = (int4_t *) neighbor->anglelist[0]; const int nlocal = atom->nlocal; eangle = 0.0; for (n = nfrom; n < nto; n++) { i1 = anglelist[n].a; i2 = anglelist[n].b; i3 = anglelist[n].c; type = anglelist[n].t; // 1st bond delx1 = x[i1].x - x[i2].x; dely1 = x[i1].y - x[i2].y; delz1 = x[i1].z - x[i2].z; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3].x - x[i2].x; dely2 = x[i3].y - x[i2].y; delz2 = x[i3].z - x[i2].z; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // c = cosine of angle c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; m = multiplicity[type]; b_factor = b[type]; // cos(n*x) = Tn(cos(x)) // Tn(x) = Chebyshev polynomials of the first kind: T_0 = 1, T_1 = x, ... // recurrence relationship: // Tn(x) = 2*x*T[n-1](x) - T[n-2](x) where T[-1](x) = 0 // also, dTn(x)/dx = n*U[n-1](x) // where Un(x) = 2*x*U[n-1](x) - U[n-2](x) and U[-1](x) = 0 // finally need to handle special case for n = 1 tn = 1.0; tn_1 = 1.0; tn_2 = 0.0; un = 1.0; un_1 = 2.0; un_2 = 0.0; // force & energy tn_2 = c; for (i = 1; i <= m; i++) { tn = 2*c*tn_1 - tn_2; tn_2 = tn_1; tn_1 = tn; } for (i = 2; i <= m; i++) { un = 2*c*un_1 - un_2; un_2 = un_1; un_1 = un; } tn = b_factor*powsign(m)*tn; un = b_factor*powsign(m)*m*un; if (EFLAG) eangle = 2*k[type]*(1.0 - tn); a = -k[type]*un; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (NEWTON_BOND || i1 < nlocal) { f[i1].x += f1[0]; f[i1].y += f1[1]; f[i1].z += f1[2]; } if (NEWTON_BOND || i2 < nlocal) { f[i2].x -= f1[0] + f3[0]; f[i2].y -= f1[1] + f3[1]; f[i2].z -= f1[2] + f3[2]; } if (NEWTON_BOND || i3 < nlocal) { f[i3].x += f3[0]; f[i3].y += f3[1]; f[i3].z += f3[2]; } if (EVFLAG) ev_tally_thr(this,i1,i2,i3,nlocal,NEWTON_BOND,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2,thr); } }