// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "omp_compat.h" #include "angle_dipole_omp.h" #include #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "neighbor.h" #include "suffix.h" using namespace LAMMPS_NS; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleDipoleOMP::AngleDipoleOMP(class LAMMPS *lmp) : AngleDipole(lmp), ThrOMP(lmp,THR_ANGLE) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void AngleDipoleOMP::compute(int eflag, int vflag) { ev_init(eflag,vflag); if (!force->newton_bond) error->all(FLERR,"'newton' flag for bonded interactions must be 'on'"); const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->nanglelist; #if defined(_OPENMP) #pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, cvatom, thr); if (inum > 0) { if (evflag) eval<1>(ifrom, ito, thr); else eval<0>(ifrom, ito, thr); } thr->timer(Timer::BOND); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void AngleDipoleOMP::eval(int nfrom, int nto, ThrData * const thr) { int iRef,iDip,iDummy,n,type; double delx,dely,delz; double eangle,tangle,fi[3],fj[3]; double r,cosGamma,deltaGamma,kdg,rmu; double delTx, delTy, delTz; double fx, fy, fz, fmod, fmod_sqrtff; const double * const * const x = atom->x; // position vector const double * const * const mu = atom->mu; // point-dipole components and moment magnitude double * const * const f = thr->get_f(); double * const * const torque = thr->get_torque(); const int * const * const anglelist = neighbor->anglelist; const int nlocal = atom->nlocal; eangle = 0.0; for (n = nfrom; n < nto; n++) { iDip = anglelist[n][0]; // dipole whose orientation is to be restrained iRef = anglelist[n][1]; // reference atom toward which dipole will point iDummy = anglelist[n][2]; // dummy atom - irrelevant to the interaction type = anglelist[n][3]; delx = x[iRef][0] - x[iDip][0]; dely = x[iRef][1] - x[iDip][1]; delz = x[iRef][2] - x[iDip][2]; r = sqrt(delx*delx + dely*dely + delz*delz); rmu = r * mu[iDip][3]; cosGamma = (mu[iDip][0]*delx+mu[iDip][1]*dely+mu[iDip][2]*delz) / rmu; deltaGamma = cosGamma - cos(gamma0[type]); kdg = k[type] * deltaGamma; if (EVFLAG) eangle = kdg * deltaGamma; // energy tangle = 2.0 * kdg / rmu; delTx = tangle * (dely*mu[iDip][2] - delz*mu[iDip][1]); delTy = tangle * (delz*mu[iDip][0] - delx*mu[iDip][2]); delTz = tangle * (delx*mu[iDip][1] - dely*mu[iDip][0]); torque[iDip][0] += delTx; torque[iDip][1] += delTy; torque[iDip][2] += delTz; // Force couple that counterbalances dipolar torque fx = dely*delTz - delz*delTy; // direction (fi): - r x (-T) fy = delz*delTx - delx*delTz; fz = delx*delTy - dely*delTx; fmod = sqrt(delTx*delTx + delTy*delTy + delTz*delTz) / r; // magnitude fmod_sqrtff = fmod / sqrt(fx*fx + fy*fy + fz*fz); fi[0] = fx * fmod_sqrtff; fi[1] = fy * fmod_sqrtff; fi[2] = fz * fmod_sqrtff; fj[0] = -fi[0]; fj[1] = -fi[1]; fj[2] = -fi[2]; f[iDip][0] += fj[0]; f[iDip][1] += fj[1]; f[iDip][2] += fj[2]; f[iRef][0] += fi[0]; f[iRef][1] += fi[1]; f[iRef][2] += fi[2]; if (EVFLAG) // virial = rij.fi = 0 (fj = -fi & fk = 0) ev_tally_thr(this,iRef,iDip,iDummy,nlocal,/* NEWTON_BOND */ 1, eangle,fi,fj,0.0,0.0,0.0,0.0,0.0,0.0,thr); } }