// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "dihedral_quadratic_omp.h" #include "atom.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "neighbor.h" #include #include "omp_compat.h" #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; #define TOLERANCE 0.05 #define SMALL 0.001 #define SMALLER 0.00001 /* ---------------------------------------------------------------------- */ DihedralQuadraticOMP::DihedralQuadraticOMP(class LAMMPS *lmp) : DihedralQuadratic(lmp), ThrOMP(lmp,THR_DIHEDRAL) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void DihedralQuadraticOMP::compute(int eflag, int vflag) { ev_init(eflag,vflag); const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->ndihedrallist; #if defined(_OPENMP) #pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, cvatom, thr); if (inum > 0) { if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } thr->timer(Timer::BOND); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void DihedralQuadraticOMP::eval(int nfrom, int nto, ThrData * const thr) { int i1,i2,i3,i4,n,type; double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm; double edihedral,f1[3],f2[3],f3[3],f4[3]; double sb1,sb2,sb3,rb1,rb3,c0,b1mag2,b1mag,b2mag2; double b2mag,b3mag2,b3mag,ctmp,r12c1,c1mag,r12c2; double c2mag,sc1,sc2,s1,s12,c,p,pd,a,a11,a22; double a33,a12,a13,a23,sx2,sy2,sz2; double s2,cx,cy,cz,cmag,dx,phi,si,siinv,sin2; edihedral = 0.0; const auto * _noalias const x = (dbl3_t *) atom->x[0]; auto * _noalias const f = (dbl3_t *) thr->get_f()[0]; const int5_t * _noalias const dihedrallist = (int5_t *) neighbor->dihedrallist[0]; const int nlocal = atom->nlocal; for (n = nfrom; n < nto; n++) { i1 = dihedrallist[n].a; i2 = dihedrallist[n].b; i3 = dihedrallist[n].c; i4 = dihedrallist[n].d; type = dihedrallist[n].t; // 1st bond vb1x = x[i1].x - x[i2].x; vb1y = x[i1].y - x[i2].y; vb1z = x[i1].z - x[i2].z; // 2nd bond vb2x = x[i3].x - x[i2].x; vb2y = x[i3].y - x[i2].y; vb2z = x[i3].z - x[i2].z; vb2xm = -vb2x; vb2ym = -vb2y; vb2zm = -vb2z; // 3rd bond vb3x = x[i4].x - x[i3].x; vb3y = x[i4].y - x[i3].y; vb3z = x[i4].z - x[i3].z; // c0 calculation sb1 = 1.0 / (vb1x*vb1x + vb1y*vb1y + vb1z*vb1z); sb2 = 1.0 / (vb2x*vb2x + vb2y*vb2y + vb2z*vb2z); sb3 = 1.0 / (vb3x*vb3x + vb3y*vb3y + vb3z*vb3z); rb1 = sqrt(sb1); rb3 = sqrt(sb3); c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3; // 1st and 2nd angle b1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z; b1mag = sqrt(b1mag2); b2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z; b2mag = sqrt(b2mag2); b3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z; b3mag = sqrt(b3mag2); ctmp = vb1x*vb2x + vb1y*vb2y + vb1z*vb2z; r12c1 = 1.0 / (b1mag*b2mag); c1mag = ctmp * r12c1; ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z; r12c2 = 1.0 / (b2mag*b3mag); c2mag = ctmp * r12c2; // cos and sin of 2 angles and final c sin2 = MAX(1.0 - c1mag*c1mag,0.0); sc1 = sqrt(sin2); if (sc1 < SMALL) sc1 = SMALL; sc1 = 1.0/sc1; sin2 = MAX(1.0 - c2mag*c2mag,0.0); sc2 = sqrt(sin2); if (sc2 < SMALL) sc2 = SMALL; sc2 = 1.0/sc2; s1 = sc1 * sc1; s2 = sc2 * sc2; s12 = sc1 * sc2; c = (c0 + c1mag*c2mag) * s12; cx = vb1y*vb2z - vb1z*vb2y; cy = vb1z*vb2x - vb1x*vb2z; cz = vb1x*vb2y - vb1y*vb2x; cmag = sqrt(cx*cx + cy*cy + cz*cz); dx = (cx*vb3x + cy*vb3y + cz*vb3z)/cmag/b3mag; // error check if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) problem(FLERR, i1, i2, i3, i4); if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; // force & energy // p = k ( phi- phi0)^2 // pd = dp/dc phi = acos(c); if (dx > 0.0) phi *= -1.0; si = sin(phi); if (fabs(si) < SMALLER) si = SMALLER; siinv = 1.0/si; double dphi = phi-phi0[type]; if (dphi > MY_PI) dphi -= 2*MY_PI; else if (dphi < -MY_PI) dphi += 2*MY_PI; p = k[type]*dphi; pd = - 2.0 * p * siinv; p = p * dphi; if (EFLAG) edihedral = p; a = pd; c = c * a; s12 = s12 * a; a11 = c*sb1*s1; a22 = -sb2 * (2.0*c0*s12 - c*(s1+s2)); a33 = c*sb3*s2; a12 = -r12c1 * (c1mag*c*s1 + c2mag*s12); a13 = -rb1*rb3*s12; a23 = r12c2 * (c2mag*c*s2 + c1mag*s12); sx2 = a12*vb1x + a22*vb2x + a23*vb3x; sy2 = a12*vb1y + a22*vb2y + a23*vb3y; sz2 = a12*vb1z + a22*vb2z + a23*vb3z; f1[0] = a11*vb1x + a12*vb2x + a13*vb3x; f1[1] = a11*vb1y + a12*vb2y + a13*vb3y; f1[2] = a11*vb1z + a12*vb2z + a13*vb3z; f2[0] = -sx2 - f1[0]; f2[1] = -sy2 - f1[1]; f2[2] = -sz2 - f1[2]; f4[0] = a13*vb1x + a23*vb2x + a33*vb3x; f4[1] = a13*vb1y + a23*vb2y + a33*vb3y; f4[2] = a13*vb1z + a23*vb2z + a33*vb3z; f3[0] = sx2 - f4[0]; f3[1] = sy2 - f4[1]; f3[2] = sz2 - f4[2]; // apply force to each of 4 atoms if (NEWTON_BOND || i1 < nlocal) { f[i1].x += f1[0]; f[i1].y += f1[1]; f[i1].z += f1[2]; } if (NEWTON_BOND || i2 < nlocal) { f[i2].x += f2[0]; f[i2].y += f2[1]; f[i2].z += f2[2]; } if (NEWTON_BOND || i3 < nlocal) { f[i3].x += f3[0]; f[i3].y += f3[1]; f[i3].z += f3[2]; } if (NEWTON_BOND || i4 < nlocal) { f[i4].x += f4[0]; f[i4].y += f4[1]; f[i4].z += f4[2]; } if (EVFLAG) ev_tally_thr(this,i1,i2,i3,i4,nlocal,NEWTON_BOND,edihedral,f1,f3,f4, vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,thr); } }