// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_reduce_chunk.h" #include "arg_info.h" #include "atom.h" #include "compute.h" #include "compute_chunk_atom.h" #include "error.h" #include "fix.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" #include using namespace LAMMPS_NS; enum{ SUM, MINN, MAXX }; #define BIG 1.0e20 /* ---------------------------------------------------------------------- */ ComputeReduceChunk::ComputeReduceChunk(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), idchunk(nullptr), vlocal(nullptr), vglobal(nullptr), alocal(nullptr), aglobal(nullptr), varatom(nullptr), cchunk(nullptr), ichunk(nullptr) { if (narg < 6) utils::missing_cmd_args(FLERR,"compute reduce/chunk", error); // ID of compute chunk/atom idchunk = utils::strdup(arg[3]); init_chunk(); // mode if (strcmp(arg[4],"sum") == 0) mode = SUM; else if (strcmp(arg[4],"min") == 0) mode = MINN; else if (strcmp(arg[4],"max") == 0) mode = MAXX; else error->all(FLERR,"Unknown compute reduce/chunk mode: {}", arg[4]); int iarg = 5; // expand args if any have wildcard character "*" int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values values.clear(); for (iarg = 0; iarg < nargnew; iarg++) { ArgInfo argi(arg[iarg]); value_t val; val.which = argi.get_type(); val.argindex = argi.get_index1(); val.id = argi.get_name(); val.val.c = nullptr; if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR,"Illegal compute reduce/chunk argument: {}", arg[iarg]); values.push_back(val); } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete [] earg[i]; memory->sfree(earg); } // error check for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for compute reduce/chunk does not exist", val.id); if (!val.val.c->peratom_flag) error->all(FLERR,"Compute reduce/chunk compute {} does not calculate per-atom values", val.id); if ((val.argindex == 0) && (val.val.c->size_peratom_cols != 0)) error->all(FLERR,"Compute reduce/chunk compute {} does not calculate a per-atom vector", val.id); if (val.argindex && (val.val.c->size_peratom_cols == 0)) error->all(FLERR,"Compute reduce/chunk compute {} does not calculate a per-atom array", val.id); if (val.argindex && (val.argindex > val.val.c->size_peratom_cols)) error->all(FLERR, "Compute reduce/chunk compute array {} is accessed out-of-range", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR,"Fix ID {} for compute reduce/chunk does not exist", val.id); if (!val.val.f->peratom_flag) error->all(FLERR,"Compute reduce/chunk fix {} does not calculate per-atom values", val.id); if ((val.argindex == 0) && (val.val.f->size_peratom_cols != 0)) error->all(FLERR,"Compute reduce/chunk fix {} does not calculate a per-atom vector", val.id); if (val.argindex && (val.val.f->size_peratom_cols == 0)) error->all(FLERR,"Compute reduce/chunk fix {} does not calculate a per-atom array", val.id); if (val.argindex && (val.argindex > val.val.f->size_peratom_cols)) error->all(FLERR,"Compute reduce/chunk fix {} array is accessed out-of-range", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for compute reduce/chunk does not exist", val.id); if (input->variable->atomstyle(val.val.v) == 0) error->all(FLERR,"Compute reduce/chunk variable is not atom-style variable"); } } // this compute produces either a vector or array if (values.size() == 1) { vector_flag = 1; size_vector_variable = 1; extvector = 0; } else { array_flag = 1; size_array_rows_variable = 1; size_array_cols = values.size(); extarray = 0; } // setup if (mode == SUM) initvalue = 0.0; else if (mode == MINN) initvalue = BIG; else if (mode == MAXX) initvalue = -BIG; maxchunk = 0; vlocal = vglobal = nullptr; alocal = aglobal = nullptr; maxatom = 0; varatom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeReduceChunk::~ComputeReduceChunk() { delete[] idchunk; memory->destroy(vlocal); memory->destroy(vglobal); memory->destroy(alocal); memory->destroy(aglobal); memory->destroy(varatom); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::init() { init_chunk(); // set indices of all computes,fixes,variables for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for compute reduce/chunk does not exist", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR,"Fix ID {} for compute reduce/chunk does not exist", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for compute reduce/chunk does not exist", val.id); } } } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::init_chunk() { cchunk = dynamic_cast(modify->get_compute_by_id(idchunk)); if (!cchunk) error->all(FLERR,"Compute chunk/atom {} does not exist or is incorrect style for " "compute reduce/chunk", idchunk); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_vector() { invoked_vector = update->ntimestep; // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); ichunk = cchunk->ichunk; if (!nchunk) return; size_vector = nchunk; if (nchunk > maxchunk) { memory->destroy(vlocal); memory->destroy(vglobal); maxchunk = nchunk; memory->create(vlocal,maxchunk,"reduce/chunk:vlocal"); memory->create(vglobal,maxchunk,"reduce/chunk:vglobal"); vector = vglobal; } // perform local reduction of single peratom value compute_one(0,vlocal,1); // reduce the per-chunk values across all procs if (mode == SUM) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_SUM,world); else if (mode == MINN) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MIN,world); else if (mode == MAXX) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MAX,world); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_array() { invoked_array = update->ntimestep; // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); ichunk = cchunk->ichunk; if (!nchunk) return; size_array_rows = nchunk; if (nchunk > maxchunk) { memory->destroy(alocal); memory->destroy(aglobal); maxchunk = nchunk; memory->create(alocal,maxchunk,values.size(),"reduce/chunk:alocal"); memory->create(aglobal,maxchunk,values.size(),"reduce/chunk:aglobal"); array = aglobal; } // perform local reduction of all peratom values for (std::size_t m = 0; m < values.size(); m++) compute_one(m,&alocal[0][m],values.size()); // reduce the per-chunk values across all procs if (mode == SUM) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*values.size(),MPI_DOUBLE,MPI_SUM,world); else if (mode == MINN) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*values.size(),MPI_DOUBLE,MPI_MIN,world); else if (mode == MAXX) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*values.size(),MPI_DOUBLE,MPI_MAX,world); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_one(int m, double *vchunk, int nstride) { // initialize per-chunk values in accumulation vector for (std::size_t i = 0; i < values.size()*nchunk; i += nstride) vchunk[i] = initvalue; // loop over my atoms // use peratom input and chunk ID of each atom to update vector int *mask = atom->mask; int nlocal = atom->nlocal; auto &val = values[m]; int index = -1; // initialization in case it has not yet been run, e.g. when // the compute was invoked right after it has been created if (val.val.c == nullptr) init(); if (val.which == ArgInfo::COMPUTE) { if (!(val.val.c->invoked_flag & Compute::INVOKED_PERATOM)) { val.val.c->compute_peratom(); val.val.c->invoked_flag |= Compute::INVOKED_PERATOM; } if (val.argindex == 0) { double *vcompute = val.val.c->vector_atom; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],vcompute[i]); } } else { double **acompute = val.val.c->array_atom; int argindexm1 = val.argindex - 1; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],acompute[i][argindexm1]); } } // access fix fields, check if fix frequency is a match } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->peratom_freq) error->all(FLERR,"Fix used in compute reduce/chunk not computed at compatible time"); if (val.argindex == 0) { double *vfix = val.val.f->vector_atom; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],vfix[i]); } } else { double **afix = val.val.f->array_atom; int argindexm1 = val.argindex - 1; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],afix[i][argindexm1]); } } // evaluate atom-style variable } else if (val.which == ArgInfo::VARIABLE) { if (atom->nmax > maxatom) { memory->destroy(varatom); maxatom = atom->nmax; memory->create(varatom,maxatom,"reduce/chunk:varatom"); } input->variable->compute_atom(val.val.v,igroup,varatom,1,0); for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],varatom[i]); } } } /* ---------------------------------------------------------------------- combine two values according to reduction mode ------------------------------------------------------------------------- */ void ComputeReduceChunk::combine(double &one, double two) { if (mode == SUM) one += two; else if (mode == MINN) { if (two < one) one = two; } else if (mode == MAXX) { if (two > one) one = two; } } /* ---------------------------------------------------------------------- lock methods: called by fix ave/time these methods ensure vector/array size is locked for Nfreq epoch by passing lock info along to compute chunk/atom ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- increment lock counter ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock_enable() { cchunk->lockcount++; } /* ---------------------------------------------------------------------- decrement lock counter in compute chunk/atom, if it still exists ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock_disable() { cchunk = dynamic_cast(modify->get_compute_by_id(idchunk)); if (cchunk) cchunk->lockcount--; } /* ---------------------------------------------------------------------- calculate and return # of chunks = length of vector/array ------------------------------------------------------------------------- */ int ComputeReduceChunk::lock_length() { nchunk = cchunk->setup_chunks(); return nchunk; } /* ---------------------------------------------------------------------- set the lock from startstep to stopstep ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock(Fix *fixptr, bigint startstep, bigint stopstep) { cchunk->lock(fixptr,startstep,stopstep); } /* ---------------------------------------------------------------------- unset the lock ------------------------------------------------------------------------- */ void ComputeReduceChunk::unlock(Fix *fixptr) { cchunk->unlock(fixptr); } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeReduceChunk::memory_usage() { double bytes = (bigint) maxatom * sizeof(double); if (values.size() == 1) bytes += (double) maxchunk * 2 * sizeof(double); else bytes += (double) maxchunk * values.size() * 2 * sizeof(double); return bytes; }