// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS Development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "grid3d_kokkos.h" #include "comm.h" #include "error.h" #include "irregular.h" #include "kokkos.h" #include "kokkos_base_fft.h" #include "kspace.h" #include "memory_kokkos.h" using namespace LAMMPS_NS; #define DELTA 16 /* ---------------------------------------------------------------------- NOTES: if o indices for ghosts are < 0 or hi indices are >= N, then grid is treated as periodic in that dimension, comm is done across the periodic boundaries tiled implementations only work for RCB, not general tilings b/c RCB tree is used to find neighboring tiles ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- constructor to create a 3d distributed grid Grid3d assigns owned/ghost cells to each proc via setup_grid() it MUST be called after constructor gcomm = caller's communicator gnx,gny,gnz = global grid size ------------------------------------------------------------------------- */ template Grid3dKokkos::Grid3dKokkos(LAMMPS *lmp, MPI_Comm gcomm,int gnx, int gny, int gnz) : Grid3d(lmp, gcomm, gnx, gny, gnz) { } /* ---------------------------------------------------------------------- alternate constructor to create a 3d distributed grid caller assigns owned/ghost cells to each proc setup_grid() must NOT be called used by MSM and PPPM/Electrode b/c their definition of ghost cells is complex gcomm = caller's communicator gnx,gny,gnz = global grid size i xyz lo/hi = extent of owned grid cells on this proc o xyz lo/hi = extent of owned+ghost grid cells on this proc owned and ghost indices are inclusive owned indices range from 0 to N-1 ghost indices can extend < 0 or >= N ------------------------------------------------------------------------- */ template Grid3dKokkos::Grid3dKokkos(LAMMPS *lmp, MPI_Comm gcomm, int gnx, int gny, int gnz, int ixlo, int ixhi, int iylo, int iyhi, int izlo, int izhi, int oxlo, int oxhi, int oylo, int oyhi, int ozlo, int ozhi) : Grid3d(lmp, gcomm, gnx, gny, gnz, ixlo, ixhi, iylo, iyhi, izlo, izhi, oxlo, oxhi, oylo, oyhi, ozlo, ozhi) { } /* ---------------------------------------------------------------------- */ template Grid3dKokkos::~Grid3dKokkos() { for (int i = 0; i < nswap; i++) { swap[i].packlist = nullptr; swap[i].unpacklist = nullptr; } // tiled comm data structs for (int i = 0; i < nsend; i++) send[i].packlist = nullptr; for (int i = 0; i < nrecv; i++) recv[i].unpacklist = nullptr; for (int i = 0; i < ncopy; i++) { copy[i].packlist = nullptr; copy[i].unpacklist = nullptr; } } /* ---------------------------------------------------------------------- grow list of swaps by DELTA ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- setup owned/ghost comm for brick comm each proc has 6 neighbors comm pattern = series of swaps with one of those 6 procs can be multiple swaps with same proc if ghost extent is large swap may not be symmetric if both procs do not need same layers of ghosts all procs perform same # of swaps in a direction, even if some don't need it ------------------------------------------------------------------------- */ template void Grid3dKokkos::setup_comm_brick(int &nbuf1, int &nbuf2) { int nsent,sendfirst,sendlast,recvfirst,recvlast; int sendplanes,recvplanes; int notdoneme,notdone; // notify 6 neighbor procs how many ghost grid planes I need from them // ghost xyz lo = # of my lower grid planes that proc xyz lo needs as its ghosts // ghost xyz hi = # of my upper grid planes that proc xyz hi needs as its ghosts // if this proc is its own neighbor across periodic bounary, value is from self int nplanes = inxlo - outxlo; if (procxlo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procxlo,0, &ghostxhi,1,MPI_INT,procxhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostxhi = nplanes; nplanes = outxhi - inxhi; if (procxhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procxhi,0, &ghostxlo,1,MPI_INT,procxlo,0,gridcomm,MPI_STATUS_IGNORE); else ghostxlo = nplanes; nplanes = inylo - outylo; if (procylo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procylo,0, &ghostyhi,1,MPI_INT,procyhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostyhi = nplanes; nplanes = outyhi - inyhi; if (procyhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,procyhi,0, &ghostylo,1,MPI_INT,procylo,0,gridcomm,MPI_STATUS_IGNORE); else ghostylo = nplanes; nplanes = inzlo - outzlo; if (proczlo != me) MPI_Sendrecv(&nplanes,1,MPI_INT,proczlo,0, &ghostzhi,1,MPI_INT,proczhi,0,gridcomm,MPI_STATUS_IGNORE); else ghostzhi = nplanes; nplanes = outzhi - inzhi; if (proczhi != me) MPI_Sendrecv(&nplanes,1,MPI_INT,proczhi,0, &ghostzlo,1,MPI_INT,proczlo,0,gridcomm,MPI_STATUS_IGNORE); else ghostzlo = nplanes; // setup swaps = exchange of grid data with one of 6 neighobr procs // can be more than one in a direction if ghost region extends beyond neigh proc // all procs have same swap count, but swapsize npack/nunpack can be empty nswap = 0; // send own grid pts to -x processor, recv ghost grid pts from +x processor nsent = 0; sendfirst = inxlo; sendlast = inxhi; recvfirst = inxhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procxlo; swap[nswap].recvproc = procxhi; sendplanes = MIN(sendlast-sendfirst+1,ghostxlo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, sendfirst,sendfirst+sendplanes-1,inylo,inyhi,inzlo,inzhi); if (procxlo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procxlo,0, &recvplanes,1,MPI_INT,procxhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, recvfirst,recvfirst+recvplanes-1,inylo,inyhi,inzlo,inzhi); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostxlo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +x processor, recv ghost grid pts from -x processor nsent = 0; sendfirst = inxlo; sendlast = inxhi; recvlast = inxlo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procxhi; swap[nswap].recvproc = procxlo; sendplanes = MIN(sendlast-sendfirst+1,ghostxhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, sendlast-sendplanes+1,sendlast,inylo,inyhi,inzlo,inzhi); if (procxhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procxhi,0, &recvplanes,1,MPI_INT,procxlo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, recvlast-recvplanes+1,recvlast,inylo,inyhi,inzlo,inzhi); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostxhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to -y processor, recv ghost grid pts from +y processor nsent = 0; sendfirst = inylo; sendlast = inyhi; recvfirst = inyhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procylo; swap[nswap].recvproc = procyhi; sendplanes = MIN(sendlast-sendfirst+1,ghostylo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,sendfirst,sendfirst+sendplanes-1,inzlo,inzhi); if (procylo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procylo,0, &recvplanes,1,MPI_INT,procyhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,recvfirst,recvfirst+recvplanes-1,inzlo,inzhi); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostylo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +y processor, recv ghost grid pts from -y processor nsent = 0; sendfirst = inylo; sendlast = inyhi; recvlast = inylo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = procyhi; swap[nswap].recvproc = procylo; sendplanes = MIN(sendlast-sendfirst+1,ghostyhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,sendlast-sendplanes+1,sendlast,inzlo,inzhi); if (procyhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,procyhi,0, &recvplanes,1,MPI_INT,procylo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,recvlast-recvplanes+1,recvlast,inzlo,inzhi); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostyhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to -z processor, recv ghost grid pts from +z processor nsent = 0; sendfirst = inzlo; sendlast = inzhi; recvfirst = inzhi+1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = proczlo; swap[nswap].recvproc = proczhi; sendplanes = MIN(sendlast-sendfirst+1,ghostzlo-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,outylo,outyhi,sendfirst,sendfirst+sendplanes-1); if (proczlo != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,proczlo,0, &recvplanes,1,MPI_INT,proczhi,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,outylo,outyhi,recvfirst,recvfirst+recvplanes-1); nsent += sendplanes; sendfirst += sendplanes; sendlast += recvplanes; recvfirst += recvplanes; nswap++; if (nsent < ghostzlo) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // send own grid pts to +z processor, recv ghost grid pts from -z processor nsent = 0; sendfirst = inzlo; sendlast = inzhi; recvlast = inzlo-1; notdone = 1; while (notdone) { if (nswap == maxswap) grow_swap(); swap[nswap].sendproc = proczhi; swap[nswap].recvproc = proczlo; sendplanes = MIN(sendlast-sendfirst+1,ghostzhi-nsent); swap[nswap].npack = indices(k_swap_packlist,nswap, outxlo,outxhi,outylo,outyhi,sendlast-sendplanes+1,sendlast); if (proczhi != me) MPI_Sendrecv(&sendplanes,1,MPI_INT,proczhi,0, &recvplanes,1,MPI_INT,proczlo,0,gridcomm,MPI_STATUS_IGNORE); else recvplanes = sendplanes; swap[nswap].nunpack = indices(k_swap_unpacklist,nswap, outxlo,outxhi,outylo,outyhi,recvlast-recvplanes+1,recvlast); nsent += sendplanes; sendfirst -= recvplanes; sendlast -= sendplanes; recvlast -= recvplanes; nswap++; if (nsent < ghostzhi) notdoneme = 1; else notdoneme = 0; MPI_Allreduce(¬doneme,¬done,1,MPI_INT,MPI_SUM,gridcomm); } // ngrid = max of any forward/reverse pack/unpack grid points int ngrid = 0; for (int i = 0; i < nswap; i++) { ngrid = MAX(ngrid,swap[i].npack); ngrid = MAX(ngrid,swap[i].nunpack); } nbuf1 = nbuf2 = ngrid; } /* ---------------------------------------------------------------------- setup owned/ghost comm for tiled comm each proc has arbitrary # of neighbors that overlap its ghost extent identify which procs will send me ghost cells, and vice versa may not be symmetric if both procs do not need same layers of ghosts comm pattern = post recvs for all my ghosts, send my owned, wait on recvs no exchanges by dimension, unlike CommTiled forward/reverse comm of particles ------------------------------------------------------------------------- */ template void Grid3dKokkos::setup_comm_tiled(int &nbuf1, int &nbuf2) { int i,m; double xlo,xhi,ylo,yhi,zlo,zhi; int ghostbox[6],pbc[3]; // find overlaps of my extended ghost box with all owned boxes // accounts for ghost box overlapping periodic boundaries // noverlap = # of overlaps, including self // overlap = vector of overlap info using Overlap data struct ghostbox[0] = outxlo; ghostbox[1] = outxhi; ghostbox[2] = outylo; ghostbox[3] = outyhi; ghostbox[4] = outzlo; ghostbox[5] = outzhi; pbc[0] = pbc[1] = pbc[2] = 0; Overlap *overlap; int noverlap = compute_overlap(1,ghostbox,pbc,overlap); // send each proc an overlap message // content: me, index of my overlap, box that overlaps with its owned cells // ncopy = # of overlaps with myself across a periodic boundary // skip copy to self when non-PBC int *proclist; memory->create(proclist,noverlap,"grid3d:proclist"); srequest = (Request *) memory->smalloc(noverlap*sizeof(Request),"grid3d:srequest"); int nsend_request = 0; ncopy = 0; for (m = 0; m < noverlap; m++) { if (overlap[m].proc == me) { if (overlap[m].pbc[0] == 0 && overlap[m].pbc[1] == 0 && overlap[m].pbc[2] == 0) continue; ncopy++; } else { proclist[nsend_request] = overlap[m].proc; srequest[nsend_request].sender = me; srequest[nsend_request].index = m; for (i = 0; i < 6; i++) srequest[nsend_request].box[i] = overlap[m].box[i]; nsend_request++; } } auto irregular = new Irregular(lmp); int nrecv_request = irregular->create_data(nsend_request,proclist,1); auto rrequest = (Request *) memory->smalloc(nrecv_request*sizeof(Request),"grid3d:rrequest"); irregular->exchange_data((char *) srequest,sizeof(Request),(char *) rrequest); irregular->destroy_data(); // compute overlaps between received ghost boxes and my owned box // overlap box used to setup my Send data struct and respond to requests send = (Send *) memory->smalloc(nrecv_request*sizeof(Send),"grid3d:send"); k_send_packlist = DAT::tdual_int_2d("grid3d:send_packlist",nrecv_request,k_send_packlist.extent(1)); sresponse = (Response *) memory->smalloc(nrecv_request*sizeof(Response),"grid3d:sresponse"); memory->destroy(proclist); memory->create(proclist,nrecv_request,"grid3d:proclist"); for (m = 0; m < nrecv_request; m++) { send[m].proc = rrequest[m].sender; xlo = MAX(rrequest[m].box[0],inxlo); xhi = MIN(rrequest[m].box[1],inxhi); ylo = MAX(rrequest[m].box[2],inylo); yhi = MIN(rrequest[m].box[3],inyhi); zlo = MAX(rrequest[m].box[4],inzlo); zhi = MIN(rrequest[m].box[5],inzhi); send[m].npack = indices(k_send_packlist,m,xlo,xhi,ylo,yhi,zlo,zhi); proclist[m] = rrequest[m].sender; sresponse[m].index = rrequest[m].index; sresponse[m].box[0] = xlo; sresponse[m].box[1] = xhi; sresponse[m].box[2] = ylo; sresponse[m].box[3] = yhi; sresponse[m].box[4] = zlo; sresponse[m].box[5] = zhi; } nsend = nrecv_request; // reply to each Request message with a Response message // content: index for the overlap on requestor, overlap box on my owned grid int nsend_response = nrecv_request; int nrecv_response = irregular->create_data(nsend_response,proclist,1); auto rresponse = (Response *) memory->smalloc(nrecv_response*sizeof(Response),"grid3d:rresponse"); irregular->exchange_data((char *) sresponse,sizeof(Response),(char *) rresponse); irregular->destroy_data(); delete irregular; // process received responses // box used to setup my Recv data struct after unwrapping via PBC // adjacent = 0 if any box of ghost cells does not adjoin my owned cells recv = (Recv *) memory->smalloc(nrecv_response*sizeof(Recv),"grid3d:recv"); k_recv_unpacklist = DAT::tdual_int_2d("grid3d:recv_unpacklist",nrecv_response,k_recv_unpacklist.extent(1)); adjacent = 1; for (i = 0; i < nrecv_response; i++) { m = rresponse[i].index; recv[i].proc = overlap[m].proc; xlo = rresponse[i].box[0] + overlap[m].pbc[0] * nx; xhi = rresponse[i].box[1] + overlap[m].pbc[0] * nx; ylo = rresponse[i].box[2] + overlap[m].pbc[1] * ny; yhi = rresponse[i].box[3] + overlap[m].pbc[1] * ny; zlo = rresponse[i].box[4] + overlap[m].pbc[2] * nz; zhi = rresponse[i].box[5] + overlap[m].pbc[2] * nz; recv[i].nunpack = indices(k_recv_unpacklist,i,xlo,xhi,ylo,yhi,zlo,zhi); if (xlo != inxhi+1 && xhi != inxlo-1 && ylo != inyhi+1 && yhi != inylo-1 && zlo != inzhi+1 && zhi != inzlo-1) adjacent = 0; } nrecv = nrecv_response; // create Copy data struct from overlaps with self // skip copy to self when non-PBC copy = (Copy *) memory->smalloc(ncopy*sizeof(Copy),"grid3d:copy"); k_copy_packlist = DAT::tdual_int_2d("grid3d:copy_packlist",ncopy,k_copy_packlist.extent(1)); k_copy_unpacklist = DAT::tdual_int_2d("grid3d:copy_unpacklist",ncopy,k_copy_unpacklist.extent(1)); ncopy = 0; for (m = 0; m < noverlap; m++) { if (overlap[m].proc != me) continue; if (overlap[m].pbc[0] == 0 && overlap[m].pbc[1] == 0 && overlap[m].pbc[2] == 0) continue; xlo = overlap[m].box[0]; xhi = overlap[m].box[1]; ylo = overlap[m].box[2]; yhi = overlap[m].box[3]; zlo = overlap[m].box[4]; zhi = overlap[m].box[5]; copy[ncopy].npack = indices(k_copy_packlist,ncopy,xlo,xhi,ylo,yhi,zlo,zhi); xlo = overlap[m].box[0] + overlap[m].pbc[0] * nx; xhi = overlap[m].box[1] + overlap[m].pbc[0] * nx; ylo = overlap[m].box[2] + overlap[m].pbc[1] * ny; yhi = overlap[m].box[3] + overlap[m].pbc[1] * ny; zlo = overlap[m].box[4] + overlap[m].pbc[2] * nz; zhi = overlap[m].box[5] + overlap[m].pbc[2] * nz; copy[ncopy].nunpack = indices(k_copy_unpacklist,ncopy,xlo,xhi,ylo,yhi,zlo,zhi); ncopy++; } // set offsets for received data int offset = 0; for (m = 0; m < nsend; m++) { send[m].offset = offset; offset += send[m].npack; } offset = 0; for (m = 0; m < nrecv; m++) { recv[m].offset = offset; offset += recv[m].nunpack; } // length of MPI requests vector is max of nsend, nrecv int nrequest = MAX(nsend,nrecv); requests = new MPI_Request[nrequest]; // clean-up clean_overlap(); memory->destroy(proclist); memory->sfree(srequest); memory->sfree(rrequest); memory->sfree(sresponse); memory->sfree(rresponse); // nbuf1 = largest pack or unpack in any Send or Recv or Copy // nbuf2 = larget of sum of all packs or unpacks in Send or Recv nbuf1 = 0; for (m = 0; m < ncopy; m++) { nbuf1 = MAX(nbuf1,copy[m].npack); nbuf1 = MAX(nbuf1,copy[m].nunpack); } int nbufs = 0; for (m = 0; m < nsend; m++) { nbuf1 = MAX(nbuf1,send[m].npack); nbufs += send[m].npack; } int nbufr = 0; for (m = 0; m < nrecv; m++) { nbuf1 = MAX(nbuf1,recv[m].nunpack); nbufr += recv[m].nunpack; } nbuf2 = MAX(nbufs,nbufr); } // ---------------------------------------------------------------------- // forward/reverse comm of owned/ghost grid data via callbacks // ---------------------------------------------------------------------- /* ---------------------------------------------------------------------- forward comm of my owned cells to other's ghost cells ------------------------------------------------------------------------- */ template void Grid3dKokkos::forward_comm(int caller, void *ptr, int which, int nper, int nbyte, FFT_DAT::tdual_FFT_SCALAR_1d& k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d& k_buf2, MPI_Datatype datatype) { if (caller == KSPACE) { if (layout != Comm::LAYOUT_TILED) forward_comm_kspace_brick((KSpace *) ptr,which,nper,k_buf1,k_buf2,datatype); else forward_comm_kspace_tiled((KSpace *) ptr,which,nper,k_buf1,k_buf2,datatype); } else error->all(FLERR,"Kokkos grid comm only supports Kspace"); } /* ---------------------------------------------------------------------- forward comm for brick decomp via list of swaps with 6 neighbor procs ------------------------------------------------------------------------- */ template void Grid3dKokkos:: forward_comm_kspace_brick(KSpace *kspace, int which, int nper, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int m; MPI_Request request; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } for (m = 0; m < nswap; m++) { if (swap[m].sendproc == me) kspaceKKBase->pack_forward_grid_kokkos(which,k_buf2,swap[m].npack,k_swap_packlist,m); else kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,swap[m].npack,k_swap_packlist,m); DeviceType().fence(); if (swap[m].sendproc != me) { if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } if (swap[m].nunpack) MPI_Irecv(buf2,nper*swap[m].nunpack,datatype, swap[m].recvproc,0,gridcomm,&request); if (swap[m].npack) MPI_Send(buf1,nper*swap[m].npack,datatype, swap[m].sendproc,0,gridcomm); if (swap[m].nunpack) MPI_Wait(&request,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } } kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf2,0,swap[m].nunpack,k_swap_unpacklist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- forward comm for tiled decomp via Send/Recv lists of each neighbor proc ------------------------------------------------------------------------- */ template void Grid3dKokkos:: forward_comm_kspace_tiled(KSpace *kspace, int which, int nper, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int i,m,offset; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } // post all receives for (m = 0; m < nrecv; m++) { offset = nper * recv[m].offset; MPI_Irecv(&buf2[offset],nper*recv[m].nunpack,datatype, recv[m].proc,0,gridcomm,&requests[m]); } // perform all sends to other procs for (m = 0; m < nsend; m++) { kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,send[m].npack,k_send_packlist,m); DeviceType().fence(); if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } MPI_Send(buf1,nper*send[m].npack,datatype,send[m].proc,0,gridcomm); } // perform all copies to self for (m = 0; m < ncopy; m++) { kspaceKKBase->pack_forward_grid_kokkos(which,k_buf1,copy[m].npack,k_copy_packlist,m); kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf1,0,copy[m].nunpack,k_copy_unpacklist,m); } // unpack all received data for (i = 0; i < nrecv; i++) { MPI_Waitany(nrecv,requests,&m,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } offset = nper * recv[m].offset; kspaceKKBase->unpack_forward_grid_kokkos(which,k_buf2,offset, recv[m].nunpack,k_recv_unpacklist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- reverse comm of my ghost cells to sum to owner cells ------------------------------------------------------------------------- */ template void Grid3dKokkos::reverse_comm(int caller, void *ptr, int which, int nper, int nbyte, FFT_DAT::tdual_FFT_SCALAR_1d& k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d& k_buf2, MPI_Datatype datatype) { if (caller == KSPACE) { if (layout != Comm::LAYOUT_TILED) reverse_comm_kspace_brick((KSpace *) ptr,which,nper,k_buf1,k_buf2,datatype); else reverse_comm_kspace_tiled((KSpace *) ptr,which,nper,k_buf1,k_buf2,datatype); } else error->all(FLERR,"Kokkos grid comm only supports Kspace"); } /* ---------------------------------------------------------------------- reverse comm for brick decomp via list of swaps with 6 neighbor procs ------------------------------------------------------------------------- */ template void Grid3dKokkos:: reverse_comm_kspace_brick(KSpace *kspace, int which, int nper, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int m; MPI_Request request; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } for (m = nswap-1; m >= 0; m--) { if (swap[m].recvproc == me) kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf2,swap[m].nunpack,k_swap_unpacklist,m); else kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,swap[m].nunpack,k_swap_unpacklist,m); DeviceType().fence(); if (swap[m].recvproc != me) { if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } if (swap[m].npack) MPI_Irecv(buf2,nper*swap[m].npack,datatype, swap[m].sendproc,0,gridcomm,&request); if (swap[m].nunpack) MPI_Send(buf1,nper*swap[m].nunpack,datatype, swap[m].recvproc,0,gridcomm); if (swap[m].npack) MPI_Wait(&request,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } } kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf2,0,swap[m].npack,k_swap_packlist,m); DeviceType().fence(); } } /* ---------------------------------------------------------------------- reverse comm for tiled decomp via Send/Recv lists of each neighbor proc ------------------------------------------------------------------------- */ template void Grid3dKokkos:: reverse_comm_kspace_tiled(KSpace *kspace, int which, int nper, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf1, FFT_DAT::tdual_FFT_SCALAR_1d &k_buf2, MPI_Datatype datatype) { int i,m,offset; KokkosBaseFFT* kspaceKKBase = dynamic_cast(kspace); FFT_SCALAR* buf1; FFT_SCALAR* buf2; if (lmp->kokkos->gpu_aware_flag) { buf1 = k_buf1.view().data(); buf2 = k_buf2.view().data(); } else { buf1 = k_buf1.h_view.data(); buf2 = k_buf2.h_view.data(); } // post all receives for (m = 0; m < nsend; m++) { offset = nper * send[m].offset; MPI_Irecv(&buf2[offset],nper*send[m].npack,datatype, send[m].proc,0,gridcomm,&requests[m]); } // perform all sends to other procs for (m = 0; m < nrecv; m++) { kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,recv[m].nunpack,k_recv_unpacklist,m); DeviceType().fence(); if (!lmp->kokkos->gpu_aware_flag) { k_buf1.modify(); k_buf1.sync(); } MPI_Send(buf1,nper*recv[m].nunpack,datatype,recv[m].proc,0,gridcomm); } // perform all copies to self for (m = 0; m < ncopy; m++) { kspaceKKBase->pack_reverse_grid_kokkos(which,k_buf1,copy[m].nunpack,k_copy_unpacklist,m); kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf1,0,copy[m].npack,k_copy_packlist,m); } // unpack all received data for (i = 0; i < nsend; i++) { MPI_Waitany(nsend,requests,&m,MPI_STATUS_IGNORE); if (!lmp->kokkos->gpu_aware_flag) { k_buf2.modify(); k_buf2.sync(); } offset = nper * send[m].offset; kspaceKKBase->unpack_reverse_grid_kokkos(which,k_buf2,offset, send[m].npack,k_send_packlist,m); DeviceType().fence(); } } // ---------------------------------------------------------------------- // miscellaneous methods // ---------------------------------------------------------------------- /* ---------------------------------------------------------------------- grow list of swaps by DELTA ------------------------------------------------------------------------- */ template void Grid3dKokkos::grow_swap() { maxswap += DELTA; swap = (Swap *) memory->srealloc(swap,maxswap*sizeof(Swap),"grid3d:swap"); if (!k_swap_packlist.d_view.data()) { k_swap_packlist = DAT::tdual_int_2d("grid3d:swap_packlist",maxswap,k_swap_packlist.extent(1)); k_swap_unpacklist = DAT::tdual_int_2d("grid3d:swap_unpacklist",maxswap,k_swap_unpacklist.extent(1)); } else { k_swap_packlist.resize(maxswap,k_swap_packlist.extent(1)); k_swap_unpacklist.resize(maxswap,k_swap_unpacklist.extent(1)); } } /* ---------------------------------------------------------------------- create 1d list of offsets into 3d array section (xlo:xhi,ylo:yhi,zlo:zhi) assume caller's 3d array is allocated as (fullxlo:fullxhi,fullylo:fullyhi,fullzlo:fullzhi) ------------------------------------------------------------------------- */ template int Grid3dKokkos::indices(DAT::tdual_int_2d &k_list, int index, int xlo, int xhi, int ylo, int yhi, int zlo, int zhi) { int nmax = (xhi-xlo+1) * (yhi-ylo+1) * (zhi-zlo+1); if (k_list.extent(1) < nmax) k_list.resize(k_list.extent(0),nmax); if (nmax == 0) return 0; int nx = (fullxhi-fullxlo+1); int ny = (fullyhi-fullylo+1); k_list.sync(); int n = 0; int ix,iy,iz; for (iz = zlo; iz <= zhi; iz++) for (iy = ylo; iy <= yhi; iy++) for (ix = xlo; ix <= xhi; ix++) k_list.h_view(index,n++) = (iz-fullzlo)*ny*nx + (iy-fullylo)*nx + (ix-fullxlo); k_list.modify(); k_list.sync(); return nmax; } namespace LAMMPS_NS { template class Grid3dKokkos; #ifdef LMP_KOKKOS_GPU template class Grid3dKokkos; #endif }